元素

出自維基百科,自由嘅百科全書
(由化學元素跳轉過嚟)
幾種唔同化學元素嘅實物

元素粵拼jyun4 sou3),又叫化學元素粵拼faa3 hok6 jyun4 sou3英文chemical element),即係無法淨係用化學反應分解嘅物質

元素係萬物嘅基礎。咩物質都有元素。到2012年為止,總共發現咗118種元素,其中94種係存在喺地球上。

元素最細嘅單位叫做原子。原子係由核子(即質子中子)同埋電子組成。

背景概念[編輯]

)原子嘅想像圖;圖顯示粒原子核(紅藍色嗰粒)同包住原子核嘅電子雲(黑色嗰笪;電子可能存在嘅空間)。
內文:原子論原子

首先思考原子(atom)嘅概念。

根據現代科學對原子嘅理解,一粒原子主要有以下嘅組成部份[1]

當中原子核仲有得再細分做質子(proton)同中子(neutron)呢兩種再細啲嘅粒子,當中前者帶正電荷,後者冇電荷-所以原子核總體係帶正電荷。電子殼帶有若干數量帶負電荷嘅電子(electron)。質子同中子大粒過電子好多-據估計,質子嘅質量大約係電子嘅 1,836 倍咁多,但喺呈中性電荷嘅原子嗰度,電子殼入面嘅負電荷會啱啱好平衡到原子核入面嘅正電荷[1][2]

發現原子[編輯]

內文:電子質子中子
睇埋:古典力學古典電磁學同埋量子力學

電子同質子嘅發現源於 19 世紀中物理學上用映像管做嘅研究:當時啲物理學家發現,駁咗映像管(下圖嘅抽象圖解)條陰極(cathode)會射一啲肉眼睇唔到嘅、有質量而且帶有負電荷嘅嘢出嚟[3][4]

  • 下圖嘅 fluorescent screen(熒幕)係一塊特製嘅表面,已知呢種表面俾輻射射到嗰陣會變色;研究者發現,映像管條陰極對住嗰一忽「熒幕」會變色,而且佢哋仲發現如果佢哋搵嚿物體遮住條陰極,塊「熒幕」上面會有個「影」,即係有一笪空間冇變色(反映嗰笪冇俾輻射射到);上述嘅結果顯示,條陰極應該係射咗啲肉眼睇唔到嘅嘢出嚟。
  • 條陰極射出嚟嘅嘢會推郁一啲輕嘅物體;噉即係表示,陰極射出嚟嗰啲嘢有動量(momentum),而一樣嘢有動量就表示嗰樣嘢有質量同速度。有關動量同速度等概念嘅詳情,可以睇吓古典力學
  • 條陰極射出嚟嘅嘢嘅郁動軌跡可以因為磁場(下圖嘅 deflecting coil)而彎曲;噉即係表示,陰極射出嚟嗰啲嘢有電荷(electric charge)-由打前少少嘅古典電磁學研究嗰度已知,係有電荷嘅物體先會因為磁場而改變郁動方向嘅。而且古典電磁學上仲有方法按件物體郁動方向點變(例如「向左定向右」同埋「變咗幾多角度」)嚟知道件物體帶嘅係正定負電荷同埋質量有幾大,進一步嘅分析顯示,條陰極射出嚟嘅嘢帶負電荷,而且質量好細(根據廿一世紀初嘅估計,一粒電子嘅質量大約係 9.1093837015 × 10-31 kg [5])。

而且打後嘅研究仲試過,搵多種用唔同材料造嘅陰極嚟搞同樣嘅實驗,發現用唔同材料造嘅陰極都出到噉嘅現象。於是科學界就萌生咗「電子」嘅概念-原子當中有質量極細、兼且帶負荷嘅組成部份[3][6]。而且電子嘅存在亦都表示,原子入面實係有一啲帶同等正電荷嘅嘢,所以原子整體先會帶中性電荷;而打後由紐西蘭物理學家盧瑟福(Ernest Rutherford)喺廿世紀頭嗰廿年做嘅一系列實驗顯示,用多種材料造嘅陽極會射出一啲帶正電荷、質量大過電子好多嘅嘢出嚟-萌生咗「質子」嘅概念[7][8];而量子力學上嘅發展亦都引致科學界喺 1930 年代初發現中子[9]

元素概念[編輯]

對原子嘅研究引起咗元素嘅諗頭:古希臘嗰陣嘅人經已有個諗法,諗住「元素係物質嘅基本,是但搵嚿物質,嚿物質都係由元素當中嘅若干款以某啲型式結合埋一齊形成嘅」[註 1][10];由 19 世紀尾至廿世紀初嘅原子研究表示,

  • 物質都係由原子組成嘅(睇返上面原子論);
  • 原子由質子同電子等再細粒啲嘅嘢組成;

呢兩個諗法自然引起咗一個猜想-「原子會唔會有好多唔同款,而呢啲款之間喺質子數量同電子數量上有差異?」[11]。事實係,早喺現代原子論成形打前,經已有煉金術同化學等領域[註 2]嘅研究者喺度觀念極大量唔同嘅化學反應,發現有某啲類型嘅物質係「冇得靠化學反應分解嘅」,呢啲物質一係就係同第啲物質結合又或者係做另外一啲物質結合嗰陣嘅副產物(「邊樣嘢係結合而成嘅產物」可以由重量等嘅資訊得知)[12];不過要去到廿世紀初,光譜學(spectroscopy;簡化噉講,電子數量唔同嘅原子喺俾射到嗰陣會有唔同嘅行為,而呢啲差異可以攞嚟搵出一嚿物質有邊啲元素喺入面)等領域上有咗突破先至造就到現代化學上對元素嘅理解[13]

上圖係(Iron;化學符號,Z = 26)嘅發射光譜(emission spectrum);簡單講,發射光譜反映一嚿物質受到某啲能量刺激嗰陣射出嚟嘅,而每隻元素(電子數量唔同)都有佢特定嘅發射光譜。

週期表[編輯]

內文:元素週期表
睇埋:原子序數同位素化學符號同埋同素異形體

喺廿一世紀初嘅化學上,元素係跟原子序數(atomic number;定義係「隻元素每粒原子入面有幾多粒質子」)嚟排嘅[14]

  • 一隻化學元素係一個款嘅原子,一隻元素會有個特定嘅原子序數(簡稱「Z」),屬於一隻元素嘅原子冚唪唥都係原子核入面有 Z 咁多粒質子;例如(hydrogen;符號,Z = 1)就係最簡單嗰隻元素,氫原子嘅原子核得嗰 1 粒質子;(carbon;符號:,Z = 6)原子嘅原子核有 6 粒質子;而(uranium;符號:,Z = 92)係一隻好重嘅元素,鈾原子嘅原子核有成 92 粒質子咁多;元素係純嘅物質,如果一嚿物質入面嘅所有原子都屬同一隻元素,就冇得用化學方法嚟再去分解佢。而由元素組成嘅物質(包括人體)就叫做化學物質(chemical substance)-喺廿一世紀初,一般人日常會接觸到嘅物質都屬化學物質[15]
  • 同一隻元素可能有好多隻唔同嘅同位素(isotope)。「一隻元素嘅同位素」係指呢幾隻同位素之間喺原子序數上一樣,但質量數(mass number;定義係「粒原子入面質子數量同中子數量埋得出嘅數」)唔同;好似係碳-13(carbon-13)同碳-14(carbon-14)噉就係同位素嘅出名例子,呢兩隻同位素都係原子核入面有 6 粒質子,所以都係屬碳,但碳-14 粒原子核嗰度多咗粒中子-所以碳-14 嘅原子核會重過碳-13 嘅,而且前者仲曉放輻射(可以睇埋放射性定年法)。同一種化學元素嘅同位素因為質子同電子數量一樣,所以化學特性會一樣,但佢哋喺物理特性上可以好唔同[16]
  • 廿一世紀初嘅化學興用元素週期表(periodic table;下圖)嚟列舉化學元素;元素週期表會按原子序數嚟排啲元素,由原子核入面得 1 粒質子嘅(Z = 1)開始數起;為咗方便起見,化學家幫每隻元素改好嗮名,而且隻隻元素都有個符號(化學符號)代表,每個符號由 1 至 3 個羅馬字母組成,例如氫嘅符號係「」而碳(Z = 6)嘅符號係「」-等啲人寫起化學相關嘅文章上嚟慳返好多時間精神,唔使吓吓都寫隻元素嘅全名出嚟;一般嚟講,喺元素週期表上同一個橫行或者同一個直行嘅元素都梗係會喺化學特性上有某啲相似性(可以睇吓電子殼同相關嘅概念)[17][18]

命名[編輯]

等金屬好早就俾人發現,所以佢哋一早就有個中文名。

而其他元素係由清朝化學家徐壽命名,好似咁樣,依種一般係根據化學元素嘅歐洲名嘅第一個音來譯出來,再根據性質(金屬、氣體)加個部首(如果係金屬,部首係金等)。但有幾種元素嘅名而家已經唔用,例如養氣(氧氣)、綠氣(氯氣)、淡氣(氮氣)等等。佢哋一般有意思,好似氧氣養活所有嘢,所以叫養氣、氯氣係綠色,所以叫綠氣等。

例子[編輯]

氣體[編輯]

金屬[編輯]

其他[編輯]

半金屬[編輯]

註釋[編輯]

  1. 古希臘人嘅元素觀念係所謂嘅古典元素-地水火風四種。根據現代化學,元素遠遠唔只有四種,不過古希臘人喺「一切物質都係由某一柞元素嗰度砌出嚟嘅」呢點上的確啱。
  2. 現代科學經已表明咗煉金術係流嘅,不過煉金術研究者的確有做物質轉化(化學反應)方面嘅實驗。

睇埋[編輯]

[編輯]

  1. 1.0 1.1 Burrows, A., Holman, J.; Parsons, An.; Pilling, G.; Price, G. (2009). Chemistry3. Italy: Oxford University Press.
  2. Housecroft, Catherine E.; Sharpe, Alan G. (2008) [2001]. Inorganic Chemistry. 3rd Ed. Harlow, Essex: Pearson Education.
  3. 3.0 3.1 Plücker, M. (1858-12-01). "XLVI. Observations on the electrical discharge through rarefied gases". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 16 (109): 408–418.
  4. Leicester, H.M. (1971). The Historical Background of Chemistry. Courier Dover. pp. 221-222.
  5. Electron. Encyclopedia Britannica.
  6. O'Hara, J. G. (March 1975). "George Johnstone Stoney, F.R.S., and the Concept of the Electron". Notes and Records of the Royal Society of London. Royal Society. 29 (2): 265-276.
  7. Wien, Wilhelm (1904). "Über positive Elektronen und die Existenz hoher Atomgewichte". Annalen der Physik. 318 (4): 669–677.
  8. Petrucci, R. H.; Harwood, W. S.; Herring, F. G. (2002). General Chemistry (8th ed.). Upper Saddle River, N.J. : Prentice Hall. p. 41.
  9. Discovery of the Neutron.
  10. Partington, J. R. (1937). A Short History of Chemistry. New York: Dover Publications.
  11. Lavoisier, A. L. (1790). Elements of chemistry translated by Robert Kerr. Edinburgh. pp. 175-6.
  12. Boyle, R. (1661). The Sceptical Chymist. London.
  13. Croswell, K. (1996). Alchemy of the Heavens. Anchor.
  14. Carey, G.W. (1914). The Chemistry of Human Life. Los Angeles.
  15. Hale, Bob (2013-09-19). Necessary Beings: An Essay on Ontology, Modality, and the Relations Between Them. OUP Oxford.
  16. Soddy, Frederick (12 December 1922). "The origins of the conceptions of isotopes" (PDF). Nobelprize.org. p. 393.
  17. Mazurs, E. G. (1974). Graphical Representations of the Periodic System During One Hundred Years. Alabama: University of Alabama Press.
  18. Van Spronsen, J. W. (1969). The Periodic System of Chemical Elements: A History of the First Hundred Years. Amsterdam: Elsevier.