黎曼zeta函數係調和級數嘅一種推廣。
調和級數發散(趨向無限大): ∑ n = 1 ∞ 1 n = 1 1 + 1 2 + 1 3 + . . . = ∞ {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n}}={\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+...=\infty }
而增大分母嘅次方,可以令佢收斂,例如: ∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + 1 3 2 + . . . = π 2 6 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+...={\frac {\pi ^{2}}{6}}}
其實分母嘅次方只要大於1,都係收斂,即對於: