流動溶液電池

出自維基百科,自由嘅百科全書
Redox Flow Battery
化學溶液存喺兩個缸裏面,將溶液去塊透釋膜上面做氧化還原[1]

流動溶液電池flow battery,液流電池,redox flow battery,氧化還原液流電池)係用氧化還原嘅一種化學電池。由兩唔同嘅化學溶液,用佢哋,等佢哋向一個方向流,兩隻溶液到咗塊透釋膜上面,做離子交換嘅化學反應[2][3]

流動溶液電池可以好似燃料電池咁,化學溶液嘅物質用完,可以加返啲新嘅溶液;亦可以好似充電池咁,化學溶液嘅物質用完,可以叉返電,即係用電源反轉氧化還原反應;好在幾乎可以無限次翻叉。個缸嘅容量決定cho2電嘅量,個缸越大,cho2嘅電量越多,亦即係好易擴大個規模(scale up),同埋透釋膜嘅面積大細影響輸出[4]

呢隻電池有唔同嘅種類型,包括無機流動溶液電池[5]同有機流動溶液電池[6]。喺每個類別之下,設計可以細分做全液流電池、半液流電池同冇膜液流電池。傳統電池同液流電池嘅根本區別係,能量存cho2喺傳統電池嘅電極材料之中;液流電池,能量儲喺電解液之中。

成分[編輯]

用喺各種液流電池嘅化學品。

組合 最大電池電壓( V ) 平均電極功率密度( W/m2 平均流體能量密度( W·h/kg 或 W·h/L ) 循環
溴酸鋰英文lithium bromate 1.1 15,000 750 Wh/Kg
氯酸犖 1.4 10,000 1400 Wh/Kg
1.07 7,950
鐵-鐵英文[[:en:Iron_redox_flow_battery|Iron_redox_flow_battery]] 1.21 500
鐵– 0.62 <200
鐵– 0.43 <200
鐵– 1.07 <200
有機 (2013) 0.8 13000 21.4 Wh/L 10
有機 (2015) 1.2 7.1 Wh/L 100
MV-TEMPO 1.25 8.4 Wh/L 100
釩-釩(硫酸鹽) 1.4 ~800 25 Wh/L
釩-釩(溴化物) 50 Wh/L 2000[2]
鈉-溴硫化物英文Polysulfide bromide battery 1.54 ~800
鋅-溴英文Zinc-bromine battery 1.85 ~1,000 75 Wh/Kg
鉛-酸(甲磺酸鹽) 1.82 ~1,000
鋅-鈰(甲磺酸鹽)英文Zinc-cerium battery 2.43 <1,200–2,500
鋅-錳(VI)/ 錳(VII) 1.2 60 Wh/L

[編輯]

  1. Qi, Zhaoxiang; Koenig, Gary M. (2017-05-12). "Review Article: Flow battery systems with solid electroactive materials". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 35 (4): 040801. doi:10.1116/1.4983210. ISSN 2166-2746. 原著喺2017-10-26歸檔. 喺2018-12-06搵到. {{cite journal}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  2. 2.0 2.1 Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014). "Emerging electrochemical energy conversion and storage technologies". Frontiers in Chemistry. 2. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898. 原著喺2014-11-29歸檔. 喺2018-12-06搵到. {{cite journal}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  3. Alotto, P.; Guarnieri, M.; Moro, F. (2014). "Redox Flow Batteries for the storage of renewable energy: a review". Renewable & Sustainable Energy Reviews. 29: 325–335. doi:10.1016/j.rser.2013.08.001. {{cite journal}}: Invalid |ref=harv (help)
  4. Yuriy V. Tolmachev "Review—Flow Batteries from 1879 to 2022 and Beyond." 2023 J. Electrochem. Soc. 170 030505. https://iopscience.iop.org/article/10.1149/1945-7111/acb8de/meta
  5. Hu, B.; Luo, J.; DeBruler C.; Hu, M; Wu, W.; Liu, T. L. (2019). Redox Active Inorganic Materials for Redox Flow Batteries in Encyclopedia of Inorganic and Bioinorganic Chemistry: Inorganic Battery Materials. pp. 1–25.
  6. Luo, J.; Hu, B.; Hu, M.; Liu, T. L. (13 September 2019). "Status and Prospects of Organic Redox Flow Batteries towards Renewable Energy Storage". ACS Energy Lett. 2019, 4 (9): 2220–2240. doi:10.1021/acsenergylett.9b01332. S2CID 202210484.