流動溶液電池
閱讀設定
流動溶液電池(flow battery,液流電池,redox flow battery,氧化還原液流電池)係用氧化還原嘅一種化學電池。由兩缸唔同嘅化學溶液,用泵整郁佢哋,等佢哋向一個方向流,兩隻溶液到咗塊透釋膜上面,做離子交換嘅化學反應[2][3]。
流動溶液電池可以好似燃料電池咁,化學溶液嘅物質用完,可以加返啲新嘅溶液;亦可以好似充電池咁,化學溶液嘅物質用完,可以叉返電,即係用電源反轉氧化還原反應;好在幾乎可以無限次翻叉。個缸嘅容量決定
呢隻電池有唔同嘅種類型,包括無機流動溶液電池[5]同有機流動溶液電池[6]。喺每個類別之下,設計可以細分做全液流電池、半液流電池同冇膜液流電池。傳統電池同液流電池嘅根本區別係,能量存
成分
[編輯]用喺各種液流電池嘅化學品。
組合 | 最大電池電壓( V ) | 平均電極功率密度( W/m2 ) | 平均流體能量密度( W·h/kg 或 W·h/L ) | 循環 |
---|---|---|---|---|
氫–溴酸鋰 | 1.1 | 15,000 | 750 Wh/Kg | |
氫–氯酸犖 | 1.4 | 10,000 | 1400 Wh/Kg | |
溴–氫 | 1.07 | 7,950 | ||
鐵-鐵 | 1.21 | 500 | ||
鐵–錫 | 0.62 | <200 | ||
鐵–鈦 | 0.43 | <200 | ||
鐵–鉻 | 1.07 | <200 | ||
有機 (2013) | 0.8 | 13000 | 21.4 Wh/L | 10 |
有機 (2015) | 1.2 | 7.1 Wh/L | 100 | |
MV-TEMPO | 1.25 | 8.4 Wh/L | 100 | |
釩-釩(硫酸鹽) | 1.4 | ~800 | 25 Wh/L | |
釩-釩(溴化物) | 50 Wh/L | 2000[2] | ||
鈉-溴硫化物多 | 1.54 | ~800 | ||
鋅-溴 | 1.85 | ~1,000 | 75 Wh/Kg | |
鉛-酸(甲磺酸鹽) | 1.82 | ~1,000 | ||
鋅-鈰(甲磺酸鹽) | 2.43 | <1,200–2,500 | ||
鋅-錳(VI)/ 錳(VII) | 1.2 | 60 Wh/L |
攷
[編輯]- ↑ Qi, Zhaoxiang; Koenig, Gary M. (2017-05-12). "Review Article: Flow battery systems with solid electroactive materials". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 35 (4): 040801. doi:10.1116/1.4983210. ISSN 2166-2746. 原著喺2017-10-26歸檔. 喺2018-12-06搵到.
{{cite journal}}
: Unknown parameter|dead-url=
ignored (|url-status=
suggested) (help) - ↑ 2.0 2.1 Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014). "Emerging electrochemical energy conversion and storage technologies". Frontiers in Chemistry. 2. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898. 原著喺2014-11-29歸檔. 喺2018-12-06搵到.
{{cite journal}}
: Unknown parameter|dead-url=
ignored (|url-status=
suggested) (help) - ↑ Alotto, P.; Guarnieri, M.; Moro, F. (2014). "Redox Flow Batteries for the storage of renewable energy: a review". Renewable & Sustainable Energy Reviews. 29: 325–335. doi:10.1016/j.rser.2013.08.001.
{{cite journal}}
: Invalid|ref=harv
(help) - ↑ Yuriy V. Tolmachev "Review—Flow Batteries from 1879 to 2022 and Beyond." 2023 J. Electrochem. Soc. 170 030505. https://iopscience.iop.org/article/10.1149/1945-7111/acb8de/meta
- ↑ Hu, B.; Luo, J.; DeBruler C.; Hu, M; Wu, W.; Liu, T. L. (2019). Redox Active Inorganic Materials for Redox Flow Batteries in Encyclopedia of Inorganic and Bioinorganic Chemistry: Inorganic Battery Materials. pp. 1–25.
- ↑ Luo, J.; Hu, B.; Hu, M.; Liu, T. L. (13 September 2019). "Status and Prospects of Organic Redox Flow Batteries towards Renewable Energy Storage". ACS Energy Lett. 2019, 4 (9): 2220–2240. doi:10.1021/acsenergylett.9b01332. S2CID 202210484.