拓撲學家正弦曲線
閱讀設定
喺拓撲學裏面,有一個拓撲空間嘅叫做拓撲學正弦曲線(英文:topologist's sine curve,又叫華沙正弦曲線,Warsaw sine curve)。呢個空間嘅定義係:
- ,
喺上面攞歐幾里得平面嘅子集拓撲。個集合亦都可以睇做呢個函數喺(0,1]區間上面嘅圖像再加上原點一點。
佢有好幾個特別嘅性質,令佢成為一個「教科書例子」,例如喺好出名嘅《拓撲學反例》入面就可以搵到佢[1]。
特性
[編輯]呢條曲線有啲好特別嘅性質。例如,雖然呢條曲線係連通嘅,但係佢既唔係局部連通,又唔係道路連通嘅。咁係因為條曲線包含原點,但係曲線入面嘅任何其他點都畫唔到一條路徑連去原點。
係一個局部緊緻空間嘅連續影像,咁係因為可以設(攞標準拓撲),, 對於 ,但係自己唔係局部緊緻嘅。
嘅拓撲維度係 。
變體
[編輯]拓樸學家正弦曲線仲有兩個變體,佢哋都有啲特別嘅性質。
拎住條拓樸學家正弦曲線,加埋佢啲極限點入去,就係封閉拓樸學家正弦曲線,不過要留意有書講嘅「拓樸學家正弦曲線」已經係呢條封閉嘅版本,而佢口中嘅「封閉拓樸學家正弦曲線」就係另一個空間嚟[2]。呢個空間喺平面入面係有界封閉嘅,所以根據Heine-Borel 定理佢係一個緊緻空間。但係佢同拓樸學家正弦曲線一樣,係連通但係唔路徑連通、唔局部連通嘅。
另外仲可以定義一個延伸拓樸學家正弦曲線,係攞條封閉拓樸學家正弦曲線再加上,呢個空間係arc連通嘅,但係唔局部連通。
睇埋
[編輯]參考資料
[編輯]- ↑ Steen, Lynn Arthur (1970). Counterexamples in topology. J. Arthur Seebach. New York: Holt, Rinehart and Winston. ISBN 0-03-079485-4. OCLC 88172.
- ↑ Munkres, James R (1979). Topology; a First Course. Englewood Cliffs. p. 158. ISBN 9780139254956.