高斯積分係高斯函數(e−x2)喺整個實數線上面嘅積分:
用平面坐標同極坐標嘅轉換可以計到高斯積分。
設 I = ∫ − ∞ ∞ e − x 2 d x {\displaystyle I=\int _{-\infty }^{\infty }e^{-x^{2}}dx} 。
I 2 {\displaystyle I^{2}}
= ( ∫ − ∞ ∞ e − x 2 d x ) 2 {\displaystyle =(\int _{-\infty }^{\infty }e^{-x^{2}}dx)^{2}}
= ( ∫ − ∞ ∞ e − x 2 d x ) ( ∫ − ∞ ∞ e − y 2 d y ) {\displaystyle =(\int _{-\infty }^{\infty }e^{-x^{2}}dx)(\int _{-\infty }^{\infty }e^{-y^{2}}dy)}
= ∫ − ∞ ∞ ∫ − ∞ ∞ e x 2 + y 2 d x d y {\displaystyle =\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }e^{x^{2}+y^{2}}dxdy}
= ∫ 0 2 π ∫ 0 ∞ r e − r 2 d r d θ {\displaystyle =\int _{0}^{2\pi }\int _{0}^{\infty }re^{-r^{2}}drd\theta } (坐標轉換)
= ∫ 0 2 π ∫ 0 ∞ e − u d u d θ {\displaystyle =\int _{0}^{2\pi }\int _{0}^{\infty }e^{-u}dud\theta }
= ∫ 0 2 π − e − u 2 | 0 ∞ d θ {\displaystyle =\int _{0}^{2\pi }-{\frac {e^{-u}}{2}}{\big |}_{0}^{\infty }d\theta }
= ∫ 0 2 π d θ 2 {\displaystyle =\int _{0}^{2\pi }{\frac {d\theta }{2}}}
= θ 2 | 0 2 π {\displaystyle ={\frac {\theta }{2}}{\big |}_{0}^{2\pi }}
= π {\displaystyle =\pi }
∴ I = π {\displaystyle \therefore I={\sqrt {\pi }}}
喺統計學嘅正態分佈裏面,佢嘅概率密度函數公式係 1 2 π σ e − ( x − μ ) 2 2 σ 2 {\displaystyle {\frac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}} 。利用以上嘅方法可以證明呢個函數喺 ( − ∞ , ∞ ) {\displaystyle (-\infty ,\infty )} 嘅積分係 1 {\displaystyle 1} 。