跳去內容

Γ函數

出自維基百科,自由嘅百科全書
(由伽瑪函數跳轉過嚟)

Γ 函數,亦叫做伽瑪函數英文Gamma function),係一個將階乘推廣到複數上嘅方法。Γ 函數係一個亞純函數,喺複平面上面除咗0同埋負整數,其他地方都係有定義嘅。佢喺理論研究同應用上都有好重要嘅意義。對任何嘅正整數,都有

定義

[編輯]

呢個符號係勒壤得揀嘅,個函數嘅定義係:

呢個積分喺實數 時係絕對收斂,亦可以考慮 複數嘅情形,呢個時候要求 嘅實部

無窮乘積

[編輯]

Γ 函數可以用無窮乘積嚟表示:

其中 就係歐拉常數

Gamma積分

[編輯]

遞歸公式

[編輯]

Γ 函數嘅遞歸公式係:

對於正整數 n,有

可以話Γ 函數係階乘嘅推廣。

推導遞歸公式

[編輯]

分部積分法嚟計呢個積分:

當 x = 0 時,。當 x 趨於無窮大時,根據洛必達法則,有:

.

因此第一項變咗零,所以:

等式嘅右面啱啱就係n。所以遞歸公式係:

重要性質

[編輯]
Γ 函數喺實軸上嘅函數圖形
  • 時,
  • 歐拉反射公式
由上面條式可以知道當 z = 1/2 時,
  • 乘法定理:
  • 補充:
呢條式可以用嚟協助計算 t 分布機率密度函數、卡方分布機率密度函數、F 分布機率密度函數等嘅累計機率。
  • 其他用乘法定理計到嘅數:

[1]

特殊值

[編輯]

斯特靈公式

[編輯]

斯特靈公式可以用嚟估計 Γ 函數嘅增長速度:

解析延拓

[編輯]
Γ 函數嘅絕對值函數圖形

注意到喺 Γ 函數的積分定義當中如果攞 嚟做實部大於零嘅複數、則積分存在,而且喺右半複平面上定義一個全純函數。利用函數方程

並注意到函數 係成個複平面上有解析延拓,我地可以喺 時設

從而將 Γ 函數延拓為成個複平面上嘅亞純函數,佢喺 有單極點,留數係

睇埋

[編輯]

出面網頁

[編輯]
  1. Mada, L. (2020-04-24). "Relations of the Gamma function". R code on Github. Code publicly available on Github [Personal Research]. 原先內容歸檔喺2021-04-02. 喺2020-04-24搵到. Relations of the Gamma function