自迴歸模型 (英文 :Autoregressive model ,AR )係一種方法攞嚟處理一迾觀察值
X
1
…
X
t
{\displaystyle X_{1}\ldots X_{t}}
嘅,種序迾可以係時間序迾或者空間序迾。通過對前便啲觀察值(通常係喺一橛窗口裏頭啲嘅)做迴歸可以得出孻尾隻觀察值,而考慮埋孻尾觀察值甚至可以對後續(相當於時間上係喺未來)啲觀察值做預測。「自」表示隻方法係對
X
{\displaystyle X}
序迾本身做嘅而嘸係做畀另外嘅變數
Y
{\displaystyle Y}
;「迴歸」指明方式係迴歸分析 。符號上,自迴歸模型用
A
R
(
p
)
{\displaystyle AR(p)}
表示。
對於序迾
p
{\displaystyle p}
,
A
R
(
p
)
{\displaystyle AR(p)}
模型着定義成:
X
t
=
c
+
∑
i
=
1
p
φ
i
X
t
−
i
+
ε
t
{\displaystyle X_{t}=c+\sum _{i=1}^{p}\varphi _{i}X_{t-i}+\varepsilon _{t}}
其中
φ
1
,
…
,
φ
p
{\displaystyle \varphi _{1},\ldots ,\varphi _{p}}
係啲參數,
c
{\displaystyle c}
係隻常數,
ε
t
{\displaystyle \varepsilon _{t}}
係白噪聲(平均數 等於0,標準差 等於
σ
{\displaystyle \sigma }
嘅隨機 誤差)。
借由褪後操作符
B
{\displaystyle B}
可以等效噉表示過上式,成:
X
t
=
c
+
∑
i
=
1
p
φ
i
B
i
X
t
+
ε
t
{\displaystyle X_{t}=c+\sum _{i=1}^{p}\varphi _{i}B^{i}X_{t}+\varepsilon _{t}}
捉右邊
X
t
{\displaystyle X_{t}}
項左移到左便合併攞多項式表示法表示有:
ϕ
[
B
]
X
t
=
c
+
ε
t
.
{\displaystyle \phi [B]X_{t}=c+\varepsilon _{t}\,.}
即係可以捉自回歸模型睇作係個輸出、出自輸入為白噪聲 嘅全極點 無限脈衝響應 濾波器(all-pole infinite impulse response filter)嘅。
另外,
A
R
(
p
)
{\displaystyle AR(p)}
都可以着睇作係一種畀連續觀察值嘅概率性模型:
P
(
X
t
|
X
t
−
1
…
X
p
)
∼
N
(
c
+
∑
i
=
1
p
φ
i
X
t
−
i
,
σ
)
{\displaystyle P(X_{t}|X_{t-1}\ldots X_{p})\sim N\left(c+\sum _{i=1}^{p}\varphi _{i}X_{t-i},\sigma \right)}
其中
N
{\displaystyle N}
表示個高斯分佈。
A
R
{\displaystyle AR}
模型個平均值函數、自協方差 (autocovariance)係:
μ
(
t
)
=
E
[
X
t
]
γ
(
t
,
i
)
=
C
o
v
(
X
t
,
X
t
−
1
)
{\displaystyle {\begin{aligned}\mu \left(t\right)&=E\left[X_{t}\right]\\\gamma \left(t,i\right)&=Cov\left(X_{t},X_{t-1}\right)\end{aligned}}}
個自協方差可以透過皮亞遜自積差相關方程 做歸一化:
ρ
(
t
,
i
)
=
C
o
v
(
X
t
,
X
t
−
i
)
V
a
r
(
X
t
)
V
a
r
(
X
t
−
i
)
{\displaystyle \rho (t,i)={\dfrac {Cov(X_{t},X_{t-i})}{{\sqrt {Var(X_{t})}}{\sqrt {Var(X_{t-i})}}}}}
其中
V
a
r
{\displaystyle Var}
係方差。自協方差表示手頭有往前個數據嗰陣,幾大程度可以知曉到後便個值。
好多時,要解得
A
R
{\displaystyle AR}
模型嘅話需要到某種平穩性(stationarity)嚟排除啲值隨
t
{\displaystyle t}
嘅變動(以下對於任意
t
{\displaystyle t}
、
i
{\displaystyle i}
都成立):
E
[
X
t
]
=
E
[
X
t
−
i
]
=
μ
{\displaystyle E[X_{t}]=E[X_{t-i}]=\mu }
,表示平均函數係常數;
C
o
v
(
X
t
,
X
t
−
i
)
=
γ
i
{\displaystyle Cov(X_{t},X_{t-i})=\gamma _{i}}
,表示自協方差取決於距離間隔而嘸係取決於
t
{\displaystyle t}
;
E
[
|
X
t
|
2
]
<
∞
{\displaystyle E[|X_{t}|^{2}]<\infty }
,表示前面兩者都係求得到嘅。
喺噉樣嘅平穩性限制下,隻
A
R
(
p
)
{\displaystyle AR(p)}
模型會有以下啲動差 :
E
[
X
t
]
=
μ
=
c
1
−
∑
i
=
1
p
φ
i
{\displaystyle E[X_{t}]=\mu ={\dfrac {c}{1-\sum _{i=1}^{p}\varphi _{i}}}}
,表示平均函數係常數;
V
a
r
(
X
t
)
=
γ
0
=
∑
j
=
1
p
φ
j
γ
−
j
+
σ
2
{\displaystyle Var(X_{t})=\gamma _{0}=\sum _{j=1}^{p}\varphi _{j}\gamma _{-j}+\sigma ^{2}}
;
C
o
v
(
X
t
,
X
t
−
i
)
=
γ
i
=
∑
j
=
1
p
φ
j
γ
i
−
j
{\displaystyle Cov(X_{t},X_{t-i})=\gamma _{i}=\sum _{j=1}^{p}\varphi _{j}\gamma _{i-j}}
,表示自方差取決於距離而嘸取決於
t
{\displaystyle t}
;
ρ
i
=
γ
i
γ
0
{\displaystyle \rho _{i}={\dfrac {\gamma _{i}}{\gamma _{0}}}}
。
對於
A
R
(
1
)
{\displaystyle AR(1)}
模型裏頭啲過程需要有
|
φ
1
|
<
1
{\displaystyle |\varphi _{1}|<1}
先平穩得;對於
A
R
(
2
)
{\displaystyle AR(2)}
模型要有
φ
1
+
φ
2
<
1
{\displaystyle \varphi _{1}+\varphi _{2}<1}
;
φ
2
−
φ
1
<
1
{\displaystyle \varphi _{2}-\varphi _{1}<1}
;
|
φ
2
|
<
1
{\displaystyle |\varphi _{2}|<1}
。推廣開去,對於
A
R
(
p
)
{\displaystyle AR(p)}
模型,廣義平穩性要求多項式根
Φ
(
z
)
:=
1
−
∑
i
=
1
p
φ
i
z
p
−
i
{\displaystyle \Phi (z):=\textstyle 1-\sum _{i=1}^{p}\varphi _{i}z^{p-i}}
要喺單位圓 外即每個複數根
z
i
{\displaystyle z_{i}}
要滿足
|
z
i
|
>
1
{\displaystyle |z_{i}|>1}
[ 1] 。
估計係數嘅方法有好多,例如普通最細二乘 法或者矩量法 (通過 Yule-Walker 方程)。
模型基於參數
φ
i
{\displaystyle \varphi _{i}}
,其中i = 1, ..., p 。啲參數戥過程嘅協方差函數之間存在有直接對應關係,而且可以將種對應關係倒過嚟從自相關函數(本身係從協方差獲得嘅)確定返參數。呢個可以使用 Yule-Walker 方程完成。
Yule-Walker 方程命名自Udny Yule同Gilbert Walker[ 2] [ 3] ,係以下方程組[ 4] :
γ
m
=
∑
k
=
1
p
φ
k
γ
m
−
k
+
σ
ε
2
δ
m
,
0
{\displaystyle \gamma _{m}=\sum _{k=1}^{p}\varphi _{k}\gamma _{m-k}+\sigma _{\varepsilon }^{2}\delta _{m,0}}
其中m = 0, …, p ,產生p + 1 方程。當中嘅
γ
m
{\displaystyle \gamma _{m}}
係
X
t
{\displaystyle X_{t}}
嘅自協方差函數;最後部分
σ
ε
{\displaystyle \sigma _{\varepsilon }}
係輸入噪音過程嘅標準差,
δ
m
,
0
{\displaystyle \delta _{m,0}}
係Kronecker delta 函數 。最後項
σ
ε
2
δ
m
,
0
{\displaystyle \sigma _{\varepsilon }^{2}\delta _{m,0}}
唯有喺m = 0 先非零,m > 0 嗰陣都係零,所以可以先求解所有啲
{
φ
m
;
m
=
1
,
2
,
…
,
p
}
.
{\displaystyle \{\varphi _{m};m=1,2,\dots ,p\}.}
{
φ
m
;
m
=
1
,
2
,
…
,
p
}
.
{\displaystyle \{\varphi _{m};m=1,2,\dots ,p\}.}
{
φ
m
;
m
=
1
,
2
,
…
,
p
}
{\displaystyle \{\varphi _{m};m=1,2,\dots ,p\}}
,憑以下方程組:
[
γ
1
γ
2
γ
3
⋮
γ
p
]
=
[
γ
0
γ
−
1
γ
−
2
⋯
γ
1
γ
0
γ
−
1
⋯
γ
2
γ
1
γ
0
⋯
⋮
⋮
⋮
⋱
γ
p
−
1
γ
p
−
2
γ
p
−
3
⋯
]
[
φ
1
φ
2
φ
3
⋮
φ
p
]
{\displaystyle {\displaystyle {\begin{bmatrix}\gamma _{1}\\\gamma _{2}\\\gamma _{3}\\\vdots \\\gamma _{p}\\\end{bmatrix}}={\begin{bmatrix}\gamma _{0}&\gamma _{-1}&\gamma _{-2}&\cdots \\\gamma _{1}&\gamma _{0}&\gamma _{-1}&\cdots \\\gamma _{2}&\gamma _{1}&\gamma _{0}&\cdots \\\vdots &\vdots &\vdots &\ddots \\\gamma _{p-1}&\gamma _{p-2}&\gamma _{p-3}&\cdots \\\end{bmatrix}}{\begin{bmatrix}\varphi _{1}\\\varphi _{2}\\\varphi _{3}\\\vdots \\\varphi _{p}\\\end{bmatrix}}}}
m = 0 嗰陣,剩餘方程係:
γ
0
=
∑
k
=
1
p
φ
k
γ
−
k
+
σ
ε
2
{\displaystyle \gamma _{0}=\sum _{k=1}^{p}\varphi _{k}\gamma _{-k}+\sigma _{\varepsilon }^{2}}
其中,一旦
{
φ
m
;
m
=
1
,
2
,
…
,
p
}
{\displaystyle \{\varphi _{m};m=1,2,\dots ,p\}}
已知,可以求解返
σ
ε
2
.
{\displaystyle \sigma _{\varepsilon }^{2}.}
↑ Shumway, Robert; Stoffer, David (2010). Time series analysis and its applications : with R examples (第3版). Springer. ISBN 144197864X .
↑ Yule, G. Udny (1927) "On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers" , Philosophical Transactions of the Royal Society of London , Ser. A, Vol. 226, 267–298.]
↑ Walker, Gilbert (1931) "On Periodicity in Series of Related Terms" , Proceedings of the Royal Society of London , Ser. A, Vol. 131, 518–532.
↑ Theodoridis, Sergios (2015-04-10). "Chapter 1. Probability and Stochastic Processes". Machine Learning: A Bayesian and Optimization Perspective . Academic Press, 2015. pp. 9–51. ISBN 978-0-12-801522-3 .