正弦函數(sinusoidal function)模擬週期性噉上上落落嘅變數,最基本嘅公式如下[1]:
如果 A = 1 , ω = 1 , φ = 0 {\displaystyle A=1,\omega =1,\varphi =0} ,畫做圖(假設 x = t {\displaystyle x=t} )就係:
計正弦波嗰陣如果揀適當嘅原點,喺 R 2 × R {\displaystyle \mathbb {R} ^{2}\times \mathbb {R} } 嘅時空就會得出 y = A cos ( k x − ω t ) {\displaystyle y=A\cos(kx-\omega t)} 。喺 R 3 × R {\displaystyle \mathbb {R} _{3}\times \mathbb {R} } 嘅時空就係 z = A cos ( k r − ω t ) {\displaystyle z=A\cos(kr-\omega t)} ,其中 r = x 2 + y 2 {\displaystyle r={\sqrt {x^{2}+y^{2}}}} ,即係 z = A cos ( k x 2 + y 2 − ω t ) {\displaystyle z=A\cos(k{\sqrt {x^{2}+y^{2}}}-\omega t)} 。