序理論

出自維基百科,自由嘅百科全書
跳去導覽 跳去搵嘢
60嘅所有除數嘅集合嘅哈斯圖,按整除性部分有序

序理論係研究捕獲數學排序嘅直覺概念嘅各種二元關係數學分支。

背景同動機[編輯]

次序無所不在——至少喺數學同相關領域例如計算機科學咁。你典型遇到嘅第一個次序係小學數學入面自然數嘅次序。呢個直覺概念好容易就擴展到其他嘅集合嘅排序,好似整數實數。實際上大於或小於一個數嘅概念一般係數系統嘅基本直覺(即管你通常感興趣於兩個數嘅,佢唔能夠由呢個次序俾出)。排序嘅另一個非常熟悉嘅例子係詞典中詞典次序。

上述類型嘅次序有個特殊性質:就係每個元素都係可以同另一個元素「比較」,即係話,佢可能大於、可能小於、或者等於另外一個元素。但係,呢個唔完全係想要嘅要求。一個周知嘅例子係集合子集排序。如果一個集合包含集合嘅所有元素,則被稱為小於等於。然而有啲集合唔可以用呢種方式嚟比較,因為其中每個都包含著其他集合入面某種唔存在嘅元素。所以,子集包含係次序,對立咗前面給出嘅次序。

序理論係一般性架構下捕獲咗上述例子引發嘅直覺次序。呢個係通過指定關係必須係數學上次序嘅一啲性質嚟完成嘅。呢種更加抽象嘅方式更有意義,因為你可以從一般性架構推導出各種定理,而唔使關心任何特定次序嘅細節。呢種洞察可以容易咁轉換到好多具體應用中。

由次序嘅各種實踐使用所驅動,已經定義咗多個特殊種類嘅有序集合,其中某啲已經發展出自己嘅數學領域。另外,序理論唔限制於各種種類嘅排序關係,仲考慮埋佢哋之間嘅適當函數。函數嘅序理論性質嘅一個簡單例子來自於數學分析中常見嘅單調函數

基礎定義[編輯]

呢個部分我哋建立一啲概念作為導引:集合論算術同埋二元關係

偏序集合[編輯]

序係特別嘅二元關係。假定係一個集合,而且係喺嘅關係,則係個偏序當佢係自反嘅反對稱嘅,且遞移嘅,則對於所有,都可以滿足:

(自反性)
如果並且(反對稱性)
如果並且(遞移性)

一個偏序性質嘅集合稱為偏序集合poset或者叫有序集合(當佢所強調嘅意指明確)。藉由呢啲性質,我哋可以知道喺自然數、整數、有理數、同埋實數都有明確嘅序關係。當然,佢哋仲有額外嘅性質成為全序,即在中對於每一個ab都可滿足:

(全序性)

呢啲序又稱為線性序或者。當好多典型序為線性嘅時候,集合內嘅有序子集合會發生唔滿足呢個性質嘅例子。另一個例子為給定一個整除性關係""。對於兩個數,當除以冇餘數時,我哋將佢書寫為,我哋可以輕易咁明白呢個係一個偏序關係。非常多進階嘅性質主要喺非線性序中。

參考[編輯]

  • B. A. Davey and H. A. Priestley, 2002. Introduction to Lattices and Order, 2nd ed. Cambridge University Press. ISBN 0-521-78451-4
A good contemporary introduction to the subject. Suitable for undergraduates.
  • G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, 2003, "Continuous Lattices and Domains," in Encyclopedia of Mathematics and its Applications, Vol. 93, Cambridge University Press. ISBN 0-521-80338-1
The comprehensive new version of the famous "Compendium" of continuous lattices. Assumes some advanced mathematical background.
A free online introduction to universal algebra, with much material on lattices.

睇埋[編輯]

出面網頁[編輯]