太空

出自維基百科,自由嘅百科全書
跳去: 定向搵嘢
地球空間同外太空之間嘅嘢-包括咗大氣層嘅各層;地球同太空中間冇明確嘅分界線。

太空粵拼taai3 hung1英國話:Space),又叫做外太空(Outer space)或者外層空間,指嘅係天體(Celestial object;包埋地球)之間嗰個好大好大嘅空間。太陽月球、同埋八大行星冚唪唥都係喺太空入面飄嚟飄去嘅。太空好接近真空宇宙大部份嘅空間都係空寥寥嘅星際空間,就連星系當中嘅空間都係以乜都冇嘅空間佔咗大半橛。佢當中啲嘢密度都好低:佢裏面有啲氣體,以等離子態(Hydrogen)為主,呢啲氣體稀薄得好緊要,冇可能令人唞到氣;太空嗰度又有啲背景幅射(Background radiation;指太空度一啲來源不明嘅電磁幅射),佢哋估計係由大爆炸(Big Bang)嗰度留落嚟嘅,令到太空叫做有些少能量喺度,但係太空嘅溫度平均重係喺攝氏零下 268 度左右,凍到乜咁,差唔多去到絕對零度(Absolute zero)[1]。除咗咁,太空嗰度重有啲流星宇宙射線、同眼睇唔到嘅重力場等嘅嘢。

地球同太空之間冇乜嘢好清楚嘅分界線,由地表嗰度計起,大氣層愈高就愈稀薄,冇話會喺某個高度啲空氣會突然間唔見嗮。為咗方便起見,響高空 100 公里嘅卡門線(Kármán line)一般都喺航天等嘅領域嗰度畀人習慣性咁當做地球同外太空之間嘅分界線[2],而用卡門線做地球同太空分界呢個慣例喺國際法等嘅地方都會用到,包括咗好出名嘅喺 1967 年制定嘅《外太空條約》(Outer Space Treaty)-呢條條約講明太空冇任何一個主權國家可以霸嗮,所有國家都有權自由咁探索佢,而佢對「太空」呢個詞嘅定義就係用咗「卡門線以外嘅空間」[3]

環境[編輯]

哈勃太空望遠鏡喺 2003 年 9 月 24 號至 2004 年 1 月 16 號影返嚟嘅 130 億光年之外嘅太空;星系同星系之間空寥寥咁幾乎乜嘢都冇。

物質[編輯]

太空係目前已知嘅環境入面最近完美真空(Perfect vacuum)嘅。星系際空間(指星系之間嘅空間)幾乎係乜嘢都冇嘅-佢每立方米得嗰幾粒氫原子[4](相比之下,人類日常唞嘅空氣每立方米有大約 1025氧氣等嘅分子[5])。呢個咁空嘅空間喺實際上冇任何嘅摩擦力,令到恆星行星、各種其他嘅天體、同埋太空船有得好自由咁喺佢哋嘅理想軌道嗰度運行。一架太空船喺太空嗰度熄咗個引擎都可以無止境咁飛到永遠(除非佢撞到啲乜)。

呢個咁空嘅環境重令到好似咁嘅電磁波(Electromangetic wave)可以飛到好遠嘅距離,而唔會畀啲嘢散射(Scattering;指好似光呢類嘅波動因為佢哋嘅傳播媒介嘅影響而改變運行嘅方向)-一粒光子喺星際空間嘅平均自由徑(Mean free path)係 1023 公里(相當於 100 億光年),即係話一粒光子喺太空嗰度平均要行嗰個距離先至會撞到啲嘢[6]。呢點令到好似哈勃太空望遠鏡咁嘅望遠鏡唔單止可以探測到好遠(幾百億光年)以外嘅光,而且科學家重可以安心咁假設呢啲光大致上係跟住直線飛嘅,所以估起其他天體同地球嘅距離上嚟易好多。

太空入面嘅嘢之中淨係得好少部份係直接觀察得到嘅-據估計,太空裏面嘅嘢有成 90% 嘅係暗物質(Dark matter)同埋暗能量(Dark energy),呢啲黑暗嘅嘢似乎唔會放任何幅射(包括可見光),所以啲太空科學家嘅望遠鏡幾勁都冇可能會直接睇到佢哋,但係呢啲嘢產生嘅重力會影響睇得到嘅天體,而透過觀察呢啲重力影響就有得估計暗物質同暗能量嘅分佈[7][8]

温度[編輯]

外太空極之凍,温度好接近絕對零度。佢充滿咗一啲背景幅射,呢啲幅射有啲係由各個恆星(包括咗太陽)嗰度射出嚟嘅,而且喺宇宙起源嘅大爆炸嗰度亦都留咗啲宇宙微波背景輻射( Cosmic microwave background radiation)落嚟(所有熱嘅嘢都會放幅射)。目前太空嘅背景幅射嘅黑體温度大約係開氏 3 度左右。呢個温度相當於攝氏零下 270 度,華氏零下 454 度[9]。喺太空嗰度嘅氣體嘅温度一定起碼等於呢個數字,但係佢入面少部份嘅空間會熱好多,例如係太陽嘅日冕(Corona;指包住恆星嘅一浸極熱等離子體)可以去到成開氏 120 萬至 260 萬度[10]

NGC 5457 係一個典型嘅螺旋星系。

幅射[編輯]

太空嗰度有好多對生物有害嘅幅射,呢啲幅射主要係能量好高嘅次原子粒子(Subatomic particle;好似係質子電子呢啲細粒過原子嘅粒子)。除咗好似係行星嘅大氣或者磁場,佢哋基本上喺太空度暢通無阻咁射嚟射去,每粒帶嘅能量由 106 到 1020 電子伏特不等[11]。呢柞高能量幅射足以傷害電子儀器同埋著住太空衣嘅人類[12]。根據去完太空返嚟嘅太空人講,太空聞落有噚好似燒燶嘢同埋金屬咁嘅除,而呢噚除重會黐喺佢哋啲太空衣同儀器度[13]

磁場[編輯]

太空嗰度重有啲磁場喺度。地球有股磁場保護住佢-地核會產生磁場,啲高能量嘅粒子好多都係帶電荷嘅,帶電荷嘅嘢會畀磁場影響而改變郁嘅方向,而地球股磁場就啱啱好令到射向地球嘅高能量粒子會改變飛行方向撞唔到落地表,保護咗包括人類在內嘅地表生物。除咗地球之外,有好多天體都曉產生磁場。例如係螺旋星系(Spiral galaxy;指螺旋形嘅星系)嘅恆星誕生過程就會產生一股大約 5 至 10 μ高斯(Gauss)嘅極弱磁場[14]

生機[編輯]

太空嘅環境可以話係極之惡劣,唔啱生物生存。一個人類如果冇著太空衣就走入太空嘅話一定會死得好慘[15],但係有某啲生物有能力喺太空環境之下生存一段長嘅時間:喺 2007 年,就有科學家發現歐洲 ESA BIOPAN 設施嘅地衣可以喺太空環境生存到成 10 日(人類喺太空入面生存到嘅時間係以嚟計嘅)[16];某啲植物品種種子喺太空度擺咗一年半重發到芽[17];除咗咁,枯草桿菌(Bacillus subtilis)又試過喺模擬嘅火星環境嗰度生存到 559 日[18]。總括嚟講,好似人類咁嘅複雜生物喺太空嗰度生存唔到,但係好多簡單嘅生物-好似某啲植物品種同埋細菌-就得。

根據宇宙撒種說(Lithopanspermia hypothesis),一啲有生命嘅行星可能會因為地質活動等嘅原因將啲帶有簡單生物嘅岩石射出去太空嗰度,而呢啲岩石跟手會飛去其他行星,並且將生命散播到周圍都係。有太空科學家估話早期嘅太陽系就發生過啲咁嘅事,令到一啲好原始嘅生命體喺地球、火星、同金星之間傳嚟傳去[19]

分區[編輯]

發現號喺 1991 年 5 月嘅 STS-39 航次嗰度睇到嘅極光;當時架船嘅軌道高度係 260 公里。

地球空間[編輯]

地球空間(Geospace)係近地球嘅太空區域。地球空間包括咗大氣層嘅上層,好似係磁層(Magnetosphere;指地球磁場有影響力嘅區域)。呢個區域有好多人造嘅嘢:大量嘅人造衛星喺呢個畀人嗌做近地軌道(Low Earth orbit)嘅區域嗰度運行,而佢哋產生嘅太空垃圾(好似係爛咗嘅衛星碎片)都係呢個區域度飄嚟飄去嘅[20]。呢個區域喺卡門線以上,喺定義上算係外太空嘅一部份,但係喺卡門線對上幾百公里之內嘅大氣密度都重係唔低,高到可以對呢啲人造嘢做成阻力,所以喺近地軌道行嘅人造衛星吓吓隔幾日就要開吓引擎嚟維持軌道,而啲太空垃圾亦都會因為阻力而失速跌返落地表。

地球空間嘅磁層所霸嘅空間因為太陽風(Solar wind;太陽因為自己內部作用而射出嚟嘅高能量粒子)而唔係完美嘅橢球體-佢對住太陽嗰面因為畀太陽風嘅壓力撳住所以有些少撳扁咗。佢畀太陽風打到有條尾,而呢條尾重可以伸到去差唔多相當於 1,000 個地球半徑咁長[21]。月球個個月梗有大約四日會行經呢條尾,而喺呢段期間月球表面會少咗好多太陽風[22]

地球空間佈滿咗啲低密度嘅帶電荷粒子,佢哋同好多自然現象息息相關。呢啲粒子有時會畀太陽風暴(指太陽風喺某啲時候突然變勁)打中而郁並且產生電流;除咗咁,喺地磁風暴(Geomagnetic storm)嗰陣,地球空間嘅地帶可以變到好唔穩定,而呢啲風暴會造成好強嘅電流。呢啲各種嘅電磁現象可以永久咁整壞人造衛星嘅電子儀器,干擾到電子通訊同埋全球定位系統,亦都可以對喺嗰啲區域做緊嘢嘅太空人做成危險。同時,佢哋重會令到一啲帶電粒子相撞同以光嘅形式嚟釋放能量-引致高緯度地區嘅上空度產生極光嘅現象[23]

地月空間[編輯]

地月空間(Cislunar space)就係指地球嘅大氣層同月球之間嘅區域。地球同月球之間嘅距離平均係 384,403 公里左右[24]。一般習慣上都會當呢個區域以外嘅太空空間係深空(Deep space)[25]

行星際空間[編輯]

喺半夜見到嘅黃道光

行星際空間(Interplanetary space)指太陽系嘅恆星-太陽-同佢柞行星(包括地球在內嘅八大行星)之間嘅空間。呢個空間有得一路延伸到去太陽圈(Heliosphere;指以太陽嘅磁場同射出嚟嘅粒子做主導嘅空間)嘅盡頭嗰度[26]。佢係用太陽風嚟定義嘅-太陽係咁向外射啲太陽風粒子,令到佢周圍有一個延伸成幾十億公里長嘅「太陽大氣層」,而呢個區域亦都係太陽嘅影響力範圍,一出咗呢個區域太陽嘅影響力就會大跌。而除咗太陽之外,其他恆星都有各自嘅行星(喺 1995 年發現咗第一粒太陽系外行星),所以都有各自嘅行星際空間[27]

太陽系嗰個行星際空間差唔多係完全真空,而喺呢個區域入面嘅平均自由徑大約係 1 個天文單位(Astronomical unit;指大約地球同太陽之間嘅距離)左右。呢個空間有些少宇宙射線,而呢啲射線包括咗離子化咗嘅原子核同埋唔同嘅次原子粒子。呢個區域大把太陽風,太陽風嘅密度平均係每立方厘米 5 到 10 粒質子,佢以秒速 350 到 400 公里向太陽嘅四周圍猛咁吹[28];除咗咁,呢個區域入面重有啲氣體、等離子體、塵埃、流星、同埋少少有機分子等嘅濕碎嘢[29]。呢啲濕碎嘢會反射太陽射出嚟嘅光,有時夜晚嗰陣喺地表用肉眼都會望得到佢哋-即係所謂嘅黃道光(Zodiacal light)現象[30]

行星際空間有好多磁場。太陽同八大行星嘅大部份(包括地球、木星土星、同水星等)都曉產生各自嘅磁場。各個行星嘅磁場都會因為太陽風嘅壓力而變形,並且喺粒行星後面形成一條好長嘅尾。呢啲行星磁場會改變佢周圍啲太陽風粒子嘅運行方向,並且保護佢哋所屬行星嘅表面唔會畀太陽風直接打擊。好似火星呢啲冇磁場嘅行星會受到太陽風嘅直擊。呢點除咗令到佢嘅表面唔啱生物生存之外,重會令到佢個大氣層畀太陽風慢慢咁吹走,呢個亦都係火星個大氣層比地球嗰個薄咁多嘅主要原因[31]

太陽圈嘅想像圖;喺呢個區域以內所有嘢都以太陽做主導,而且無時無刻都會有好勁嘅太陽風吹住。

星際空間[編輯]

內文: 星際物質

星際空間(Interstellar space)係指同一個星系入面啲恆星系之間嘅空間[32],而星際物質(Interstellar medium)就係喺呢個空間入面嗰啲物質。星際物質入面有成大約 70% 左右嘅質量係單獨嘅氫原子,而淨低嘅就多數係(Helium),重有少量嘅由恆星核合成(Stellar nucleosynthesis)嗰度嚟嘅重原子-恆星內部嘅核聚變(Nuclear fusion)等嘅反應係透過將氫呢啲細粒原子撞埋一齊嚟產生能量(光同熱)同大粒原子嘅,呢啲大粒原子會以恆星風(Stellar wind)等嘅形式畀佢哋所屬嘅恆星射出去太空嗰度,而且一粒超新星(Supernova)爆嗰陣佢入面又會有好多嘢飛出太空度。星際空間嘅物質密度可以好唔同:平均大約係每立方米 106 粒粒子,但係凍啲嘅分子雲(Molecular cloud)入面可以有每立方米 108 到 1012 粒粒子[33]

星際空間有唔少種類嘅粒子存在,包括得 0.1 微米咁細嘅塵埃粒子[34]。喺呢啲空間度有啲分子雲-指一啲物質密度高些少嘅區域,而喺呢啲區域度嘅粒子可以有化學反應產生啲複雜啲嘅多原子(Polyatomic)嘅物質種類。帶有能量嘅宇宙射線會穿過又凍又密嘅分子雲,將嗰度嘅粒子(主要係氫同氦)離子化或者令到佢哋能量增加(咁嘅話佢哋就更加有機會會撞埋一齊做化學反應),甚至重會產生含(Carbon)嘅有機物質分子[35]

最近地球嘅星際空間區域係太陽 100 秒差距(Parsecs;1 秒差距大約等如 3.2616 光年)之內嘅區域。呢個區域大致上同本地泡(Local Bubble)相等。「本地泡」係銀河系獵戶臂(Orion Arm)當中一個密度零舍低嘅區域。佢四周圍有啲密嘅分子雲圍住,而佢入面有大約 104 到 105 粒恆星同埋一啲温度去到開氏 7000 度左右、半俓由 0.5 到 5 秒差距長嘅星際雲[36]

星系際空間[編輯]

地球四周圍 10 億光年之內嘅宇宙嘅物質分佈;圖入面見到一柞星系以纖維狀嘅結構聚集埋一齊-當中有好多窿窿。
內文: 星系際物質

星系際空間(Intergalactic space)係指星系(Galaxy;一大堆畀萬有引力吸埋一齊嘅恆星系,包括咗太陽系身處嘅銀河系)之間嘅空間。對於星系嘅研究顯示宇宙入面有大約 1/10 嘅空間畀各種嘅星系霸住,而淨低落嚟嘅空間幾乎係完全空嘅。宇宙嘅密度分佈好明顯唔均勻,佢嘅物質密度由喺星系入面嘅非常高去到喺廣大嘅星系際空間嘅非常低,喺星系際空間度每立方米連 1 粒氫原子都未必有。

星系之間有啲稀薄嘅等離子體圍住[37]。呢啲等離子體畀人嗌做星系際介質(Intergalactic medium),以畀啲嘢電離咗嘅氫為主,所以有數量大致上相等嘅電子同質子。佢哋似乎有纖維狀嘅結構[38],而且密度係宇宙平均嘅 10 到 100 倍,每立方米有 10 到 100 粒氫原子。

以地球嘅標準嚟睇,星系際介質嘅温度熱得好交關,當啲氣體由空洞走入去星系際介質嗰度,佢哋會加熱到去成開氏 105 到 107[39]-足以令到氫原子相撞撞到佢哋啲電子飛嗮出嚟變做等離子體。喺呢個温度嘅星系際介質叫做溫熱星系際介質(Warm-hot intergalactic medium;簡稱「WHIM」)。根據電腦嘅模擬顯示,宇宙入面睇怕有超過一半嘅原子物質都係以呢種狀態存在嘅[40][41]

太空探索[編輯]

探險家二號
內文: 太空探索

古代[編輯]

早喺史前時期人類經已有喺度諗天外面以外嘅世界。公元前 350 年嘅古希臘哲學家有討論好多有關哲學宇宙嘅嘢,當中嘅阿里士多德(Aristotle)曾經提出「大自然最憎真空」(Horror vacui)嘅諗法,而呢個諗法係建基喺公元前 5 世紀希臘哲學家 Parmenides 嘅見解:Parmenides 認為真空呢家嘢冇可能存在[42]。呢個觀點喺後尾嗰千幾年都普遍受到西人信服,一路去到成 17 世紀,法國哲學家笛卡兒(René Descartes)都重喺度詏話太空入面唔係真空,而係有一啲睇唔到嘅物質喺度。

而喺東方,公元 2 世紀嘅東漢天文學家張衡又有曾經話空間係無止境嘅,而且延伸到去太陽同埋星星以外嘅地方-即係話嗰時嘅東方人(或者至少係中原嗰頭嘅人)已經對於「天以外嘅世界」係啲乜有些少基本概念。

廿世紀以嚟[編輯]

喺人類歷史嘅大部份時間,人類要探索太空多數都淨係有得用望遠鏡等嘅架生睇或者靠估。但係由廿世紀開始,各種嘅航天科技開始發展得好快。喺 1935 年,美國高高度氣球「探險家二號」(Explorer II)載住人飛到上去離地表 22 公里咁高[43]。打後喺 1942 年德國二戰嗰陣研發嘅V-2火箭爬升到去成離地表 80 公里嘅高空。而 1957 年嘅俄羅斯火箭帶住人造衛星史撥尼克1號飛咗上去離地表 215 到 939 公里嘅高度-超過咗卡門線[44]。第一次有人類上太空就係 1961 年嘅俄羅斯太空人加加林俄文:Ю́рий Алексе́евич Гага́рин;英文:Yuri Gagarin),佢搭住架太空船飛到上去超過卡門線嘅地方,跟手重要安全咁返到落地球。後嚟美國嘅太空人三人組 Frank Borman、Jim Lovell、同 William Anders 就喺阿波羅8號上到去月球軌道-係第一次有人類可以脫離地球軌道-重去到成離地球 377,349 公里嗰度咁遠[45]

到咗廿一世紀,人類射火箭帶啲人同衛星上太空已經係家常便飯。喺近地軌道嗰度飛緊嘅衛星同太空垃圾多到數都數唔嗮。而且歐美地區重開始咗探索人類搬屋去太空嘅可能性,並且射咗好多探測器去金星或者火星呢啲近地球嘅行星[46]

太空法[編輯]

內文: 太空法

外太空條約》(Outer Space Treaty)喺國際法嗰度提供咗世界各國應該點樣看待外太空嘅一套框架。佢定義咗乜嘢係「太空」同埋天體,並且講到明話世界嘅各國都有權自由咁探索太空,而冇任何一個國家有資格霸住太空嚟用。佢亦都唔畀人喺外大空嗰度用核武。呢個條約係喺 1963 年由聯合國大會通過,而跟手喺 1967 年由美國、英國、同蘇聯簽埋嘅。直至 2008 年,呢條條約一共有 98 個國家(包括中國)簽咗[47]

睇埋[編輯]

美國太空總署(NASA)個標誌;美國太空總署喺廿世紀嘅太空探索方面有住領導性嘅地位。

太空科學[編輯]

近人類嘅天體[編輯]

[編輯]

[編輯]

  1. Chuss, D. T. (June 26, 2008), Cosmic Background Explorer, NASA Goddard Space Flight Center, archived from the original on May 9, 2013, retrieved 2013-04-27.
  2. "Where does space begin? – Aerospace Engineering, Aviation News, Salary, Jobs and Museums". Aerospace Engineering, Aviation News, Salary, Jobs and Museums. Archived from the original on 2015-11-17. Retrieved 2015-11-10.
  3. Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies
  4. Tadokoro, M. (1968), "A Study of the Local Group by Use of the Virial Theorem", Publications of the Astronomical Society of Japan, 20: 230, Bibcode:1968PASJ...20..230T. This source estimates a density of 7 × 10−29 g/cm3 for the Local Group. An atomic mass unit is 1.66 × 10−24 g, for roughly 40 atoms per cubic meter.
  5. Tyson, P. (January 2012), The Kinetic Atmosphere: Molecular Numbers (PDF), archived from the original (PDF) on 16 March 2014, retrieved 13 September 2013.
  6. Davies 1977, p. 93.
  7. Trimble, V. (1987), "Existence and nature of dark matter in the universe", Annual Review of Astronomy and Astrophysics, 25: 425–472, Bibcode:1987ARA&A..25..425T,
  8. Dark Energy, Dark Matter
  9. Fixsen, D. J. (December 2009), "The Temperature of the Cosmic Microwave Background", The Astrophysical Journal, 707 (2): 916–920,
  10. Withbroe, G. L. (February 1988), "The temperature structure, mass, and energy flow in the corona and inner solar wind", Astrophysical Journal, Part 1, 325: 442–467,
  11. Letessier-Selvon, A.; Stanev, T. (July 2011), "Ultrahigh energy cosmic rays", Reviews of Modern Physics, 83 (3): 907-942.
  12. Lide 1993, p. 11-217.
  13. Lizzie Schiffman (July 17, 2013), What Does Space Smell Like, Popular Science, archived from the original on February 24, 2014, retrieved February 19, 2014.
  14. Wielebinski, R.; Beck, R. (2010), "Cosmic Magnetic Fields − An Overview", in Block, David L.; Freeman, Kenneth C.; Puerari, Ivânio, Galaxies and their Masks: A Conference in Honour of K.C. Freeman, FRS, Springer Science & Business Media, pp. 67–82.
  15. Bolonkin, A, (2009), "Man in Outer Space Without a Special Space Suit", American Journal of Engineering and Applied Sciences, 2 (4): 573–579,
  16. Raggio, J.; et al. (May 2011), "Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment with Aspicilia fruticulosa", Astrobiology, 11 (4), pp. 281–292,
  17. Tepfer, D.; et al. (May 2012), "Survival of Plant Seeds, Their UV Screens, and nptII DNA for 18 Months Outside the International Space Station" (PDF), Astrobiology, 12 (5), pp. 517–528,
  18. Wassmann, M.; et al. (May 2012), "Survival of Spores of the UV-ResistantBacillus subtilis Strain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E", Astrobiology, 12 (5), pp. 498–507,
  19. Nicholson, W. L. (April 2010), "Towards a General Theory of Lithopanspermia", Astrobiology Science Conference 2010, 1538, pp. 5272–528,
  20. Portree, D.; Loftus, J. (1999), Orbital Debris: A Chronology, NASA, p. 13, archived from the original (PDF) on 2000-09-01, retrieved 2012-05-05.
  21. Koskinen 2010, pp. 32, 42.
  22. Mendillo 2000, p. 275.
  23. "Geomagnetic Storms" (PDF), OECD/IFP Futures Project on "Future Global Shocks", CENTRA Technology, Inc., pp. 1–69, January 14, 2011, archived (PDF) from the original on March 14, 2012, retrieved 2012-04-07.
  24. Strickland, J. K. (October 1, 2012). "The cislunar gateway with no gate". The Space Review. Archived from the original on February 7, 2016. Retrieved 2016-02-10.
  25. Dickson 2010, p. 57.
  26. Abby Cessna (July 5, 2009), "Interplanetary space", Universe Today, archived from the original on March 19, 2015.
  27. Frisch et al. 2002, pp. 21-34.
  28. Papagiannis 1972, pp. 12–149.
  29. Flynn, G. J.; et al. (2003), "The Origin of Organic Matter in the Solar System: Evidence from the Interplanetary Dust Particles", in Norris, R.; Stootman, F., Bioastronomy 2002: Life Among the Stars, Proceedings of IAU Symposium #213, San Francisco: Astronomical Society of the Pacific, Bibcode:2004IAUS..213..275F.
  30. Leinert, C.; Grun, E. (1990), "Interplanetary Dust", Physics of the Inner Heliosphere I, Berlin, Germany: Springer-Verlag: 207, Bibcode:1990pihl.book..207L.
  31. Johnson, R. E. (August 1994), "Plasma-Induced Sputtering of an Atmosphere", Space Science Reviews, 69 (3–4): 215–253,
  32. Jia-Rui Cook (September 12, 2013), "How do we know when Voyager reaches interstellar space?", JPL News, 2013-278, archived from the original on September 15, 2013.
  33. Ferrière, K. M. (2001), "The interstellar environment of our galaxy", Reviews of Modern Physics, 73 (4): 1031.
  34. Rauchfuss 2008, pp. 72–81.
  35. Klemperer, W. (August 15, 2006), "Interstellar chemistry", Proceedings of the National Academy of Sciences of the United States of America, 103 (33): 12232–12234,
  36. Redfield, S. (September 2006), "The Local Interstellar Medium", New Horizons in Astronomy; Proceedings of the Conference– Held 16–18 October 2005 at The University of Texas, Austin, Texas, USA, Frank N. Bash Symposium ASP Conference Series, 352, p. 79,
  37. Jafelice, L. C.; Opher, R. (July 1992), "The origin of intergalactic magnetic fields due to extragalactic jets", Monthly Notices of the Royal Astronomical Society, Royal Astronomical Society, 257 (1): 135–151,
  38. Wadsley, J. W.; et al. (August 20, 2002), "The Universe in Hot Gas", Astronomy Picture of the Day, NASA, archived from the original on June 9, 2009, retrieved 2009-06-19.
  39. Gupta, A.; Galeazzi, M.; Ursino, E. (May 2010), "Detection and Characterization of the Warm-Hot Intergalactic Medium", Bulletin of the American Astronomical Society, 41: 908.
  40. Fang, T.; et al. (2010), "Confirmation of X-Ray Absorption by Warm-Hot Intergalactic Medium in the Sculptor Wall", The Astrophysical Journal, 714 (2): 1715.
  41. Bykov, A. M.; Paerels, F. B. S.; Petrosian, V. (February 2008), "Equilibration Processes in the Warm-Hot Intergalactic Medium", Space Science Reviews, 134 (1–4): 141-153.
  42. Grant 1981, p. 10.
  43. Pfotzer, G. (June 1972), "History of the Use of Balloons in Scientific Experiments", Space Science Reviews, 13 (2): 199–242
  44. O'Leary 2009, pp. 209–224.
  45. Orloff 2001.
  46. Landgraf, M.; et al. (February 2001), "IRSI/Darwin: peering through the interplanetary dust cloud", ESA Bulletin, (105): 60-63.
  47. Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, United Nations Office for Outer Space Affairs, January 1, 2008, archived from the original on February 22, 2011, retrieved 2009-12-30.

參考[編輯]