八元數

出自維基百科,自由嘅百科全書
跳去: 定向搵嘢
數學
基本

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}

自然數 \mathbb{N}
整數 \mathbb{Z}
二進分數
有限小數
循環小數
有理數 \mathbb{Q}
高斯整數 \mathbb{Z}[i]
代數數 \mathbb{A}
實數 \mathbb{R}
複數 \mathbb{C}

負數
分數
單位分數
無限小數
規矩數
無理數
超越數
二次無理數
虛數
艾森斯坦整數 \mathbb{Z}[\omega]

延伸

雙複數
四元數 \mathbb{H}
共四元數
八元數 \mathbb{O}
超數
上超實數
超現實數

超複數
十六元數 \mathbb{S}
複四元數
Tessarine
大實數
超實數 {}^\star\mathbb{R}

其他

對偶數
雙曲複數
序數
質數
同餘
可計算數
艾禮富數

公稱值
超限數
基數
P進數
規矩數
整數序列
數學常數

圓周率 π = 3.141592653…
自然對數嘅底 e = 2.718281828…
虛數單位 i = +\sqrt{-1}
無窮大量 

八元數四元數嘅廷伸而且使用符號 \mathbb{O}

[編輯]

八元數係喺1843年John Graves寄畀威廉·盧雲·哈密頓嘅一封信入面第一次提到。後來八元數喺1845年Arthur Cayley自己一個獨立發表。

Arthur Cayley發表嘅八元數同John Graves寄畀威廉·盧雲·哈密頓嘅信中所提及嘅八元數並冇關係。

單元乘法表[編輯]

八元數可以睇成係透過實數構造而成嘅八維向量空間,佢嘅乘法係由八個單位元素(1, i, j, k, l, m, n, o)遵循以下嘅規則而進行嘅:

\begin{matrix}
 i^2=j^2=k^2=l^2=m^2=n^2=o^2=-1\\
 i=jk=lm=on=-kj=-ml=-no\\
 j=ki=ln=mo=-ik=-nl=-om\\
 k=ij=lo=nm=-ji=-ol=-mn\\
 l=mi=nj=ok=-im=-jn=-ko\\
 m=il=oj=kn=-li=-jo=-nk\\
 n=jl=io=mk=-lj=-oi=-km\\
 o=ni=jm=kl=-in=-mj=-lk
\end{matrix}

八元數乘法並唔滿足交換律

ij = -ji \neq ji\,

亦都唔滿足結合律

(ij)l = -i(jl) \neq i(jl)\,

睇埋[編輯]