超限數

出自維基百科,自由嘅百科全書
跳去: 定向搵嘢
數學
基本

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}

自然數 \mathbb{N}
整數 \mathbb{Z}
二進分數
有限小數
循環小數
有理數 \mathbb{Q}
高斯整數 \mathbb{Z}[i]
代數數 \mathbb{A}
實數 \mathbb{R}
複數 \mathbb{C}

負數
分數
單位分數
無限小數
規矩數
無理數
超越數
二次無理數
虛數
艾森斯坦整數 \mathbb{Z}[\omega]

延伸

雙複數
四元數 \mathbb{H}
共四元數
八元數 \mathbb{O}
超數
上超實數
超現實數

超複數
十六元數 \mathbb{S}
複四元數
Tessarine
大實數
超實數 {}^\star\mathbb{R}

其他

對偶數
雙曲複數
序數
質數
同餘
可計算數
艾禮富數

公稱值
超限數
基數
P進數
規矩數
整數序列
數學常數

圓周率 π = 3.141592653…
自然對數嘅底 e = 2.718281828…
虛數單位 i = +\sqrt{-1}
無窮大量 

超限數係大過晒所有嘅有限數、仍然唔需要定義做絕對無限基數或者序數。術語「超限」(transfinite)係由康托爾提出,佢希望避免詞語無限(infinite)同嗰啲只不過唔係有限(finite)嘅嗰啲義象有關嘅某啲暗含。

當期時其他作者都好少有呢啲疑惑;依家俾人所接受嘅用法係假定超限基數或者序數係無限嘅,但即使係咁,而家術語「超限」一樣重有人用緊。

對於有限數,有兩種方式考慮超限數,作為基數同作為序數。不似得有限基數同序數咁樣,超限基數同超限序數定義咗唔同類別嘅數。

  • 第一個超限基數aleph-0 \aleph_0整數無限集合。如果選擇公理成立,下一個更高嘅基數就係 aleph-1 \aleph_1。如果唔成立,就會出現好多唔可以同 aleph-1 比較並且大過 aleph-0 嘅其他基數。但係喺任何情況之下,點都唔會有基數係大過 aleph-0 並且細過 aleph-1。

連續統假設聲稱係 aleph-0 同連續統(實數嘅集合)嘅勢之間係冇任何中間基數:即係話 aleph-1 係額數集合嘅勢。已經喺數學上証實咗連續統假設係証實唔到係真定係假,咁係由於不完備性嘅影響。

某啲作者,比如 Suppes、Rubin 用術語超限基數嚟稱呼戴德金無限集合嘅勢,係可以唔等於無限基數嘅上下文中;即係話係唔假定可數選擇公理成立嘅上下文中。

假設呢個定義係啱,下面四項就係等價嘅:

  • \mathbf{m} 係超限基數。就係話有一個戴德金無限集合 A 令到 A 嘅勢係 \mathbf{m}
  • \mathbf{m}+1 = \mathbf{m}
  • \aleph_0 \leq \mathbf{m}
  • 有一個基數 \mathbf{n} 使到 \aleph_0 + \mathbf{n} = \mathbf{m}

引用[編輯]

參考[編輯]