熵


熵(粵音:soeng1;英文:entropy)係統計力學同熱力學等領域常用嘅概念,係熱力學系統具有嘅外延性質(外延性質係會同個系統嘅大細成比例嘅物理性質)。考慮 呢個數值:是但搵個熱力學系統,佢會有一啲宏觀性質(例如溫度、壓力)而個系統會有若干個可能嘅微狀態(粒子 A 喺位置 X 而粒子 B 喺位置 Y...、粒子 A 喺位置 Y 而粒子 B 喺位置 X... 等等),能夠同個系統啲宏觀性質吻合嘅微狀態數量就係 咁多;熵係 嘅函數,即係話熵反映咗已知個系統嘅宏觀性質係點,個系統有幾多個可能嘅微狀態。假設每個微狀態都一樣咁有可能發生(概率一樣),個系統嘅熵可以用以下呢條式計出嚟[1][2]:
喺實際應用上, 嘅數值通常都極之大:根據估計,一嚿喺室溫同大氣壓力之下、容量 20 公升嘅氣體總共有大約 N ≈ ×1023 6 咁多粒氣體分子(阿伏加德羅常數),而呢嚿氣體嘅 數值( 反映「已知呢嚿氣體有 N ≈ ×1023 6 粒分子,可能嘅微狀態數量」)會更加大[3]。
熱力學第二定律
[編輯]根據熱力學第二定律,一個封閉系統當中嘅熵永遠唔會跌,只有可能維持不變或者升。熱力學第二定律意味住,搵個封閉系統,隨住時間過去,個系統內部嘅粒子同能量頂櫳維持唔郁,而喺現實多數會慢慢走位(可能嘅微狀態數量上升),會漸漸趨向熱力學平衡-熵數值最大化嘅狀態。好似生物等嘅非封閉系統(會同周圍環境傳能量)可以內部熵下降,但噉做實會引致佢周圍環境嘅熵升,而且升至少同一樣咁多。因為噉,宇宙嘅總熵依然會升[4]。
順帶一提,如果宇宙最後真係完全變成熱力學平衡,根據物理學家計算,宇宙最後會變成溫度分佈完全平均,而且溫度接近絕對零度(攝氏零下 273.15 度)嘅空間,唔會再有任何作功,更加唔會有生命-而呢個情況就係假想中嘅熱寂[5]。
同資訊嘅啦掕
[編輯]熵仲同資訊有住密切嘅啦掕:熵由帶隨機性嘅微狀態數量決定,所以熵會反映「知道咗個系統嘅宏觀性質,需要幾多資訊先可以講明個系統處於乜嘢物理狀態」;因為呢個緣故,外行人會話熵表達咗個系統有幾「亂」-一個系統嘅熵愈高,就表示觀察者對個系統知道得愈少(有愈多不確定嘅可能性),所以就愈「亂」。而對物理意義上嘅熵嘅考量的確同資訊理論有關,不過資訊理論當中講嘅熵同物理熵係兩個唔同嘅概念[6][7]。
同生命嘅挐掕
[編輯]生物學到咗廿一世紀初都仲有就「生命應該點樣定義」呢個問題作出討論[8]。有生物學家講到,有生命嘅嘢有負熵(negative entropy)嘅特性[9][10][11]。
根據生物物理學觀點,「生物」可以想像成一種特殊嘅開放系統:佢哋有能力透過由環境嗰度攞能量,並且跟手將啲質素差咗嘅能量排返出嚟,嚟到去減低佢哋自己內部嘅熵(負熵)-即係等佢哋自己內部嗰啲能量唔會散開變成平均嘅分佈[12][13];不過,負熵只係生物嘅其中一種特性,齋靠呢點唔可以定義「生命」-曉減低自己內部嘅熵嘅唔淨只係得應該屬於生物嘅嘢,雪櫃都識做呢樣嘢[14]。
睇埋
[編輯]參考
[編輯]- Adam, Gerhard; Otto Hittmair (1992). Wärmetheorie. Vieweg, Braunschweig. ISBN 978-3-528-33311-9.
- Dugdale, J. S. (1996). Entropy and its Physical Meaning (2nd ed.). Taylor and Francis (UK); CRC (US). ISBN 978-0-7484-0569-5.
- Fermi, Enrico (1937). Thermodynamics. Prentice Hall. ISBN 978-0-486-60361-2.
- Goldstein, Martin; Inge, F (1993). The Refrigerator and the Universe. Harvard University Press. ISBN 978-0-674-75325-9.
- Serway, Raymond, A. (1992). Physics for Scientists and Engineers. Saunders Golden Subburst Series. ISBN 978-0-03-096026-0.
- Spirax-Sarco Limited, Entropy – A Basic Understanding A primer on entropy tables for steam engineering.
- von Baeyer; Hans Christian (1998). Maxwell's Demon: Why Warmth Disperses and Time Passes. Random House. ISBN 978-0-679-43342-2.
引咗
[編輯]- ↑ Ligrone, Roberto (2019). "Glossary". Biological Innovations that Built the World: A Four-billion-year Journey through Life & Earth History. Entropy. Springer. p. 478.
- ↑ Baierlein, Ralph (2003). Thermal Physics. Cambridge University Press.
- ↑ 3.0 3.1 Richard Feynman (1970). The Feynman Lectures on Physics Vol I. Addison Wesley Longman.
- ↑ Zohuri, Bahman (2016). Dimensional Analysis Beyond the Pi Theorem. Springer. p. 111.
- ↑ Adams, Fred C.; Laughlin, Gregory (1997). "A dying universe: the long-term fate and evolution of astrophysical objects". Reviews of Modern Physics. 69 (2): 337–72.
- ↑ Rietman, Edward A.; Tuszynski, Jack A. (2017). "Thermodynamics & Cancer Dormancy: A Perspective". In Wang, Yuzhuo; Crea, Francesco (eds.). Tumor Dormancy & Recurrence (Cancer Drug Discovery and Development). Introduction: Entropy & Information. Humana Press. p. 63.
- ↑ Brooks, D. R., Collier, J., Maurer, B. A., Smith, J. D., & Wiley, E. O. (1989). Entropy and information in evolving biological systems. Biology and Philosophy, 4(4), 407-432.
- ↑ Popa, Radu (March 2004). Between Necessity and Probability: Searching for the Definition and Origin of Life (Advances in Astrobiology and Biogeophysics).
- ↑ Schrödinger, Erwin (1944). What is Life?. Cambridge University Press.
- ↑ Baierlein, Ralph (2003). Thermal Physics. Cambridge University Press.
- ↑ Margulis, Lynn; Sagan, Dorion (1995). What is Life?. University of California Press.
- ↑ Lovelock, James (2000). Gaia – a New Look at Life on Earth. Oxford University Press.
- ↑ Avery, John (2003). Information Theory and Evolution. World Scientific.
- ↑ Second Law: Refrigerator.
拎
[編輯]- (英文) 熵與熱力學第二定律