生成對抗網絡
閱讀設定
(由生成網絡跳轉過嚟)
生成對抗網絡(粵拼:sang1 sing4 deoi3 kong3 mong5 lok6;英文:generative adversarial network,GAN)係一種人工神經網絡做法。用呢種方法建構神經網絡涉及整兩個人工神經網絡,然後再要嗰兩個神經網絡互相競爭,從而產生新而且幾可亂真嘅數據。最基本嗰種生成對抗網絡做法大致如下[1][2]:
- 建立兩個神經網絡;
- 其中一個神經網絡做生成網絡(generative network),生成網絡會負責輸出數據,當中「數據」可以係圖像、聲或者影片都得;
- 另外嗰個神經網絡就會做分辨網絡(discriminative network),分辨網絡會以生成網絡嘅輸出同真數據做自己輸入,foreach 數據,個分辨網絡要負責嗰件數據係真定假(「假」意思即係話「嗰件數據係由個生成網絡老作嘅」);
- 對於個生成網絡嚟講,佢最重要嘅目的係要呃到個分辨網絡-即係務求要做到令自己產生嘅數據俾個分辨網絡判定係「真」;
- 如是者,呢兩個網絡會互相對抗,順利嘅話,生成網絡會變到能夠產生幾可亂真嘅數據[3][4]。
舉個例說明,建立兩個神經網絡,生成網絡會攞一串字符做輸入,並且嘗試產生出符合嗰段字符描述(例:「唐人男人」、「白種女人」... 等等)嘅人面,然後個分辨網絡就會攞輸入,分辨網絡嘅輸入有兩種-真嘅人面同生成網絡憑空建構嘅人面,而分辨網絡嘅輸出係一個表示「幅圖有幾大機率係真」嘅數值 (「假」係指「嗰幅圖係由生成網絡老作嘅」);生成網絡嘅目的係要令自己產生嘅圖像得到嘅 值有咁大得咁大-如果有適當嘅演算法配合嘅話,個生成網絡最後會學習到能夠產生望落係真、但查實唔存在嘅人面[5]。
睇埋
[編輯]參考文獻
[編輯]- Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014). Generative Adversarial Networks (PDF). Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014). pp. 2672–2680.
攷
[編輯]- ↑ A Beginner's Guide to Generative Adversarial Networks (GANs). Pathmind.
- ↑ Goodfellow, I. et al. (2014). Generative Adversarial Networks (PDF). Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014). pp. 2672–2680.
- ↑ Salimans, Tim; Goodfellow, Ian; Zaremba, Wojciech; Cheung, Vicki; Radford, Alec; Chen, Xi (2016). "Improved Techniques for Training GANs".
- ↑ Isola, Phillip; Zhu, Jun-Yan; Zhou, Tinghui; Efros, Alexei (2017). "Image-to-Image Translation with Conditional Adversarial Nets". Computer Vision and Pattern Recognition.
- ↑ Generate Realistic Human Face using GAN 互聯網檔案館嘅歸檔,歸檔日期2020年7月30號,.. Towards Data Science.