認知科學

出自維基百科,自由嘅百科全書
Jump to navigation Jump to search
認知科學所橫跨嘅六個領域:哲學、語言學、人類學、神經科學、人工智能、同心理學[1][2]

認知科學粵拼jing6 zi1 fo1 hok6英文cognitive science,詞源係拉丁文cognosco」-即係拉丁文當中「了解」嘅意思[3])係研究認知(cognition)嘅科學領域。「研究認知」包括咗研究(人類第啲動物嘅)心靈智能,剖析神經系統(尤其係腦部)點樣透過各式各樣嘅過程表示、處理、以及轉化訊息[4][5][6]。好似係:

  • 感知(由外界嗰度吸取訊息)、
  • 注意力(由外界嘅訊息當中篩選一部份集中處理)、
  • 記憶(將訊息儲起,等將來有得使用)、
  • 知識(用手上已有嘅訊息,對事物作出判斷)、
  • 語言(用符號嚟向第啲個體傳達訊息)、
  • 學習(用過往收過嘅訊息修改自己嘅行為)、同
  • 想像(喺冇外界刺激嘅情況下,喺個腦當中整同組合訊息)

... 等等嘅心智功能,都屬於認知科學嘅研究範疇(有關「訊息」嘅概念化同量化,可以睇訊息論)。有人就用呢句噉嘅說話嚟概括認知科學呢個領域係做乜嘅[2]

原版英文:"The central hypothesis of cognitive science is that thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

粵文翻譯:認知科學嘅中心假說係,思考可以想像成心靈裏面嘅(訊息)表示構造以及對呢啲構造做運算嘅過程。

認知科學好大程度上係一門跨學科領域。認知科學家會借用哲學(尤其係心靈哲學)、語言學人類學神經科學人工智能、同心理學等領域嘅知識嚟做研究[7],而一份典型嘅認知科學研究會考慮好多層嘅問題-神經細胞(neuron)之間會互傳訊號,呢啲訊號代表嘅訊息可以包括咗「對睇到啲乜」同埋「由記憶嗰度抽取嘅片段」呀噉(神經科學同認知心理學嘅範疇)[8];跟住個個體可能會運用把口講嘢嘅聲或者手寫嘅文字表達呢啲訊息俾第個個體知(語言學嘅範疇)[9];而如果班研究者用電腦程式模擬呢個過程嘅話,就可能會幫到手創造出曉好似人類噉諗嘢同講嘢嘅機械人(人工智能嘅範疇)[10]-呢啲噉多唔同層次嘅考量冚唪唥都屬於認知科學嘅範圍之內[11][12]

基礎[編輯]

哲學問題[編輯]

睇埋:心靈哲學

心靈哲學(philosophy of mind)係哲學嘅一個子領域,專門思考有關心靈(mind)嘅問題,而認知科學家要研究嘅係心靈,所以佢哋第一步就係要向心靈哲學求教,問呢個問題:「心靈」到底係乜?[13]

對於呢個問題,功能主義(functionalism)嘅觀點主張,要判定一件物件「係唔係心靈」係應該以佢嘅行動同傾向定義嘅:要將物件分類,可以運用至少兩個方法,一係靠佢哋嘅物料分,二係靠佢哋嘅功能嚟分;例如係一張噉,一張木抬同鐵枱喺物料上唔同,具有唔同嘅物理成份,但功能同行為上相同(有一個表面,能夠俾人擺啲嘢喺上面等),所以用功能嚟分可以算係同一種物件。心靈功能主義主張嘅就係,心靈係一種功能上嘅物件分類-假想而家有個用血肉造嘅同一個用電子零件造嘅電腦,兩者都係能夠做運算嘅物體,而如果嗰部電腦能夠有齊嗮血肉造嘅腦嘅功能-即係感受情緒、學習知識、做決策呀噉-嘅話,噉佢就可以算得上係一個「心靈」[14]

廿世紀後半橛以至廿一世紀初嘅認知科學家一般都抱持功能主義觀點,認為如果有一個人工智能或者一個(例如)外星人嘅腦-喺化學成份上可能同人腦好唔同-而佢係有齊嗮人類智能嘅功能嘅話,佢都可以算得上係一個心靈。呢點令到認知科學同神經科學(neuroscience)有明顯差異-唔似得後者噉傾向淨係對人腦嘅物理化學性質感興趣[13]

基本模型[編輯]

功能性磁振造影所造出嘅人腦影像;紅色嗰幾笪表示活動零舍強。

喺認知科學上,研究者一般會將心靈當做一個訊息處理系統噉睇,而根據呢個觀點,心靈曉做兩大功能:

心智表徵[編輯]

內文: 心智表徵

首先,心靈裏面有一啲心智表徵(mental representation;呢個英文名意思係「心靈入面嘅代表」噉解)嚟表示所處理緊嘅訊息[15]。一個心智表徵代表住某一份個心靈處理緊嘅訊息,而一份訊息可以係個心靈對某啲事物或者邏輯關係嘅概念,例如一個人心裏面會對「一張凳」係乜嘢樣有個概念,呢個概念係對佢見過嘅凳嘅抽象化(abstraction)-噉講意思即係話,佢見過嘅凳查實張張都唔同樣,但呢啲唔同嘅凳會有某啲共通點,呢啲共通點會組成佢心目中象徵「凳」嘅心智表徵,令到佢曉分辨邊啲物件係凳,邊啲唔係。學界一般認為,心靈會用數碼模擬等嘅多種方式記住唔同嘅心智表徵,而呢個主張就係雙重編碼理論(dual-coding theory)嘅根基[16]

運算[編輯]

內文: 認知

有咗啲心智表徵之後,心靈要用心智表徵作出一啲運算(computation),由某啲輸入得到某啲輸出嚟解難。根據三層假說(tri-level hypothesis),心靈當中嘅運算大致上可以用三種方法描述[16][17][18]

  • 運算層面computational level):係最抽象嗰層,個描述淨係要講明運算嘅目的(要由乜嘢輸入得到乜嘢輸出);
  • 演算法層面algorithmic level):要將要做嘅運算用演算法嘅形式表達出嚟;
  • 執行層面implementation level):講明啲運算要點樣以物理形式實現。

舉個例子說明,假想有個認知科學家想嘗試整一個理論模型解釋人類點樣做理性決策。呢個模型嘅輸入(input)包括多個「可能嘅選擇」,而輸出(output)就包括咗「選擇當中最理想嗰個」(運算層面);個模型嘅演算法要包含多個子程序,做「每一個選擇同佢計個效益」等嘅工作(演算法層面;心智表徵會反映佢對「世界點運作」嘅認識,所以會幫到手計算「邊個邊個行動方案大概會引致乜結果」);而假設人腦係能夠做理性決策嘅,噉個腦梗要有某啲細胞負責(例如)儲住每個選擇嘅效益數值(執行層面),於是班研究者就用神經成像(neuroimaging;能夠掃瞄個腦,整出一幅顯示個腦各部份嘅活動嘅圖像)方法做個實驗,要一班受試者一路做一啲決策,一路用神經成像方法監察住佢哋嘅腦活動,而如果佢哋發現(例如)某個腦區啲神經細胞嘅活躍度同諗緊嗰個選擇嘅效益成正比,噉就好有可能表示,喺人類心靈當中,呢柞神經細胞就係負責儲住嗰個選擇嘅效益數值嘅細胞[19]

跨學科性[編輯]

睇埋:創發

認知科學嘅一個核心諗頭係,齋靠研究一個層次嘅現象係唔能夠完全噉了解心靈嘅。例如家吓有個人見過一樣嘢,然後再喺一段時間之後回想返起件嘢個樣;喺呢個過程之中,佢個心靈裏面至少會發生以下嘅事[20]

  1. 佢對要接收到由件嘢嚟嘅光;
  2. 視網膜表面嗰啲感光神經細胞要射一柞訊號上個腦塊視覺皮層(visual cortex;個腦主管視覺嗰忽)嗰度,啲訊號要帶有有關「見到乜嘢影像嘅訊息」(例:啲感光細胞射嘅訊號嘅頻率等嘅特性會隨住收到嘅光嘅強度同色水等變數而改變,所以個腦可以靠睇收到嘅訊號嘅特性,判斷眼見到嘅影像係點樣嘅);
  3. 個腦要以某啲方式儲起呢啲訊息,仲要記住個影像係乜嘢物件嘅影像,一部用馮紐曼架構(Von Neumann architecture)嘅數碼電腦會將啲資訊以一大柞數字嘅形式記低喺記憶體裏面-例如幅圖像每一點有一個 24 個位嘅數字記住嗰點係乜顏色,跟住有 1,024 x 768 x 24 = 18,874,368 個噉樣嘅數字俾部電腦記住(不過人腦用嘅並唔係馮紐曼架構)[21]
  4. 喺一段時間之後,當嗰個人俾人叫佢諗返起件物件嘅影像嗰陣,佢要記得件物件嘅名對應嘅係佢個腦儲住嘅邊一幅影像,喺腦入面重新建構幅影像出嚟。

要研究人類嘅心靈,研究者要運用由多個領域嚟嘅方法:

  • 首先,佢哋要考慮神經細胞層面嘅現象(所謂嘅「硬件」),量度神經細胞-好似係正話提到嘅視網膜感光細胞-嘅活動,即係要用到神經科學以及生理學上會用嘅研究方法;
  • 另一方面,佢哋又要量度嗰個人嘅行為(所謂嘅「軟件」)-好似要求個人睇完幅圖像過咗一段時間之後,要佢喺冇得再望到幅圖嘅情況下大致上噉畫返幅圖像出嚟,靠呢個行為量度評估嗰個人係咪能夠清楚噉回想返起幅圖像係乜嘢樣,而呢類嘅行為量度係心理學(尤其係認知心理學)上常用嘅心理實驗方法;
  • 跟住研究者可能會想砌一個數學模型出嚟,描述到由「睇到幅圖」去到「大致上噉畫返佢出嚟」嘅過程,而為咗評估呢個模型係咪準確噉描述個現象,佢哋可能會將個模型寫做一個電腦程式,再睇吓呢個程式係咪能夠做到「見過一樣嘢,然後再喺一段時間之後回想返起件嘢個樣」呢一樣工作(如果得,噉佢哋就更加有信心呢個模型係準確噉描述到個過程嘅),呢個一般俾人認為係人工智能嘅做法[10]

... 等等。呢啲唔同層面嘅量度同分析唔能夠各自獨力噉提供對人類記憶過程嘅完整理解[19]-所以認知科學本質上就係一個跨學科(interdisciplinary)嘅領域[2][22][23]

研究方法[編輯]

米爾格倫電擊實驗嘅圖解

認知科學研究可以用以下嘅方法做:

行為實驗[編輯]

睇埋:實驗心理學

一個個體內部嘅訊息處理過程會主宰佢嘅決策同埋行為,所以原則上,由行為嗰度可以睇得出個個體內部嘅訊息處理過程。透過量度行為嚟研究訊息處理過程呢家嘢喺認知心理學(cognitive psychology)同心理物理學(psychophysics)等嘅領域上常用,呢啲研究方法會量度受試者嘅某一啲行為,睇吓受試者對唔同類嘅刺激反應會有乜唔同,靠噉對個個體內部嘅訊息處理過程作出判斷[24][25]

有心理學家試過評估心理學研究常用嘅行為量度法,認為行為量度法可以分三大類:量度行為過後留低嘅痕跡(behavioral traces)-例如靠一個停車場地板嘅垃圾量嚟量度用嗰個停車場嘅人隨地抌垃圾嘅行為;直接目擊同觀察個行為,並且作出一啲量度(behavioral observations)-例如用攝影機影低啲受試者嘅行為,打後再人手數吓每個受試者做咗一個行為(假設研究者對個行為有明確嘅定義)幾多次;俾受試者作出選擇(behavioral choice)-例如要受試者玩一個博弈(睇埋博弈論),俾佢哋分錢,再睇吓受試者會唔會喺某啲情況下零舍傾向分多錢俾自己[26]

例如係好出名嘅米爾格倫電擊實驗(Milgram experiment)噉,喺呢個實驗當中,研究者(E)會命令受試者(T)向一個假扮做受試者嘅研究者(L)施加電擊(睇附圖)。當 T 撳掣嗰陣,L 會扮到好似受到電擊而好痛噉嘅樣。結果通常都係,T 都會受到命令嗰陣唔情願噉選擇撳掣-「撳唔撳掣」嘅行為就係一種選擇性行為量度,而個受試者受命令施加電擊嗰陣「會猶疑幾耐」就係一個可能嘅觀察性行為量度,米爾格倫電擊實驗成日俾心理學家攞嚟展示人類盲目服從權威嘅傾向[27]

常用量度[編輯]

喺認知科學上常用嘅行為量度有以下呢啲:

  • 反應時間(reaction time):反應時間定義上係指一個刺激出現嘅時間點同個受試者俾反應嘅時間點嘅差距,能夠提供好多有關訊息處理過程嘅知識,例如如果一個研究者叫個受試者喺見到一個粉紅色三角閃過嗰陣就撳某一個掣,而佢哋發現如果個粉紅色三角出現前 1 秒有個箭咀出現,受試者反應會快咗,噉就表示「對某件快速閃過嘅物體作出反應」嘅認知過程能夠受到喺件物體打前出現嘅刺激影響,幫到心理學家手嘗試整出能夠描述呢個認知過程嘅理論模型[28]
  • 眼動追蹤(eye tracking):呢類研究方法係用一啲方法(視個別方法而有所不同)量度受試者嘅眼珠活動;一般嚟講,受試者望邊反映咗佢哋將注意力擺喺邊,所以眼動追蹤嘅研究方法喺注意力研究上成日用,例如家吓有個研究者想研究人類傾向望啲乜,佢可以一路用眼動追蹤量度受試者嘅眼珠活動,一路俾佢哋睇有唔同物件喺入面嘅圖,並且分析數據,睇吓受試者花最多時間望邊啲物件[29][30]
  • 心理物理反應(psychophysical responses):心理物理學係心理學嘅一個子領域,專門研究刺激嘅物理性質(例如係光嘅強度同聲嘅頻率呀噉)會點樣影響呢啲刺激所造成嘅感受同體驗,心理物理學研究方法會要求受試者對刺激嘅物理性質作出判斷,並且睇吓呢啲判斷會受到乜嘢因素影響,心理物理學上嘅實驗會做一啲操控,再睇吓呢啲操控會點樣影響受試者(例如)判斷兩個色水(又或者兩個聲)係咪相同,靠噉嚟窺探感知方面嘅現象[31][32]

認知模型[編輯]

一個簡單人工神經網絡嘅圖解
內文: 認知模型

認知科學係一門科學,所以會追求用精確嘅模型描述、解釋、同預測現實世界嘅現象。一個認知模型(cognitive model)會指出嗮所描述嘅現象當中嘅重要變數,並且用一條或者多條算式表達呢啲變數之間嘅關係[33][34]

舉個例說明,人工神經網絡(artificial neural network)就係一種常見嘅認知模型:一隻(例如)靈長目動物嘅腦閒閒地有斷百億計嘅神經細胞,一粒神經細胞喺俾化學物訊號刺激到嗰陣,會跟住以電或者化學物嚟傳新訊號,所以當一粒神經細胞射訊號嗰陣可以引起連鎖反應,將訊息喺成個神經網絡嗰度傳開去[35][36][37];一個人工神經網絡由大量嘅人工神經細胞(artificial neuron)組成。喺用電腦程式整神經網絡嗰陣,研究者會每粒人工神經細胞都同佢設返個數值,用呢個數代表佢嘅啟動程度(activation level)[38],每粒神經細胞嘅啟動程度嘅數值都有條式計,呢條式包括咗喺佢之前嗰啲神經細胞嘅啟動程度[39]

例如家吓搵個神經網絡入面某一粒人工神經細胞集中睇佢,佢會有返個數字嚟反映佢嘅啟動程度,而呢個數字取決於第啲人工神經細胞嘅啟動程度-即係話個程式會有一條類似噉樣嘅算式:

;(指明有啲乜嘢變數,同埋用數學式表述變數之間嘅關係)

喺呢條式當中, 代表嗰粒神經細胞嘅啟動程度, 代表其他神經細胞當中第 粒嘅啟動程度,而 就係其他神經細胞當中第 粒嘅權重(指嗰粒神經細胞有幾影響到 嗰粒神經細胞嘅啟動程度)。所以當一粒人工神經細胞啟動嗰陣,會帶起佢後面啲人工神經細胞跟住佢啟動-似十足生物神經網絡入面嗰啲神經細胞噉。假如個神經網絡嘅程式令佢能夠自行按照經驗改變 嘅數值嘅話,佢就會曉學習[39]

喺建立咗一個人工神經網絡模型之後,認知科學家就可以用佢做一啲運算,睇吓人工神經細胞嘅行為(包括係受到刺激嗰陣嘅活動規律等)似唔似真嘅神經細胞;研究顯示,簡單嘅分層同向前啟動嘅神經網絡並唔能夠完全準確噉描述生物神經細胞嘅行為,於是認知科學家就會追求更加準確噉模擬生物神經細胞嘅人工神經網絡模型-例如改變吓個網絡啲人工神經細胞之間嘅連繫,睇吓呢啲調整能唔能夠令個網絡喺行為上更加接近生物生經網絡,目標係最後整到一個完美噉模擬生物神經網絡嘅模型(睇埋人工智能[40][41]

神經方法[編輯]

一幅磁力共振造影整嘅腦影像;紅色箭咀指住嗰舊係海馬體
內文: 神經成像

神經成像(neuroimaging)涉及用某啲物理方法嚟產生一幅描述個腦某啲部份嘅圖像。喺認知科學上,研究者好多時會要受試者一路做某啲作業,一路用神經成像方法監察佢哋嘅腦入面發生緊乜嘢事,並且將嘗試搵出唔同嘅腦活動同某啲行為量度有乜嘢關係,而認知神經科學(cognitive neuroscience)就係認知科學嘅一個子領域,專門研究唔同嘅認知過程分別由邊啲腦區主宰。認知科學上常用嘅神經成像法有以下呢啲[20]

  • 正電子放射斷層掃描(positron emission tomography,簡稱「PET」)運用放射性嘅同位素嘅原理,研究者將(對身體冇害嘅)放射性同位素注射入去受試者嘅血入面,跟住呢啲同位素會俾血帶入去受試者嘅腦嗰度,並且射出幅射,然後研究者就可以量度由頭殼唔同部份射出嚟嘅呢啲幅射,得知個腦邊忽有最多呢啲同位素,亦都會知個腦邊忽最多血到-一般嚟講,一個腦區多血到就表示佢活躍度高,一個腦區喺個人做某件作業嗰陣零舍活躍,就表示佢好有可能係負責同嗰個作業相關嘅認知過程嘅[42]
  • 磁力共振造影(magnetic resonance imaging,簡稱「MRI」)會用磁場嚟干擾某啲原子(主要係原子)嘅活動,探測邊個腦區零舍多帶嘅血-多帶氧血通常就表示嗰個腦區處於好活躍嘅狀態;功能性磁振造影(functional MRI,簡稱「fMRI」)係磁力共振造影嘅一種,能夠俾個人一路做某啲嘢一路監察佢個腦入面嘅帶氧血分佈,喺認知神經科學上成日俾科學家攞嚟研究「邊個腦區同邊啲認知活動有關」[43]
  • 腦電圖(electroencephalography,簡稱「EEG」)做法係擺啲電極喺受試者嘅頭皮表面,並且量度微電場變化:神經細胞之間嘅訊息傳遞係靠微細嘅電訊號做嘅,而電嘅流動會造成電場上嘅改變(睇古典電磁學),所以神經細胞嘅活動會造成電場改變,而量度呢啲改變原則可以窺探腦裏面嘅神經細胞活動。量度到唔同時間點頭殼唔同位置嘅電場之後,認知科學家就可以睇吓(例如)某個腦區嘅電活動會唔會同某種認知作業特別有相關。腦電圖好處係有高嘅時間解像度(可以睇到細至幾毫秒之間嘅變化),但空間解像度低(淨係可以話到俾研究者知個活動嘅大致位置)而且衹係量度得到大腦皮層(cerebral cortex;人腦最外面嗰浸)嘅活動[44]
  • 腦磁圖(magnetoencephalography,簡稱「MEG」)做法同腦電圖相似,分別在於腦磁圖唔係用電極量度電場,而係用一啲特製嘅感應器量度係頭皮嗰度嘅磁場(電活動會產生磁場)。腦磁圖好處係,磁場冇噉易受頭皮阻礙,所以腦磁圖嘅空間解像度好過腦電圖[45]

綜合三法[編輯]

一般認為,一個完整嘅認知科學理論模型要有一個受行為實驗證據支持嘅模型,個模型最好有數學算式表達啲變數之間嘅關係,然後研究者要用神經成像嘅方法,搵出個模型入面各部份對應個腦嘅邊啲區域。舉個簡單嘅例子說明,工作記憶(working memory)模型係一個局部描述記憶嘅理論模型,結構如下[46]

工作記憶嘅模型圖解

根據呢個模型,工作記憶係一個暫時儲住個人用緊嘅訊息嘅功能,分做三大子系統,當中視覺空間畫板(visuo-spatial sketchpad)同語音循環(phonological loop)分別負責儲起視覺同聽覺嘅工作訊息,而且係兩個獨立嘅系統(呢個可以用一個演算法表達)。呢一點受行為實驗證據支持:有實驗發現,當一個受試者俾人要求佢同時暫時記住兩個唔啦更嘅視覺訊息(例如係兩幅圖片)嗰陣,佢哋嘅記憶表現會受負面影響(記得一個唔記得第二個),而要暫時記住兩個唔啦更嘅聽覺訊息(例如係兩段說話)都係一樣嘅情況;但當研究者要受試者暫時記住一個視覺訊息同一個聽覺訊息嗰陣,佢哋嘅記憶表現就唔會點受負面影響-表示個腦有兩個唔同嘅儲存器,一個專門暫時儲視覺訊息,另一個專門暫時儲聽覺訊息。而假想家陣一個研究工作記憶嘅認知科學家做一個實驗,一路用功能性磁振造影監察住受試者嘅腦活動,一路要佢哋暫時記一啲圖像;然後發現某個腦區嘅活躍程度(以帶氧血濃度嚟量度)同「要記嘅視覺訊息嘅複雜度」成正比-呢個腦區好有可能就係視覺空間畫板神經上嘅對應[47][48]

重要課題[編輯]

人類嘅心靈可以想像成一個受進化塑造成能夠解難嘅運算機械:喺物競天擇嘅過程當中,有生命嘅嘢彼此之間會互相爭資源,爭到多資源嘅個體比較有機會生存到落嚟同繁殖下一代,所以隨住一個生物族群世代嘅變化,唔擅長生存同繁殖嘅個體會受淘汰,慢慢噉淨低有能力生存同繁殖嘅個體,而心靈都會受物競天擇嘅力量塑造-心靈會影響人類(同第啲具有心靈嘅動物)點樣做決策同理解佢哋周圍嘅環境,某啲心靈特徵會比較有助生存同繁殖,例如假設其他因素不變,能夠準確判斷一個環境係咪有危險理應有助生存同繁殖。於是隨住進化嘅過程,今日嘅人類嘅心靈做到基本上噉幫助佢哋處理由環境嚟嘅訊息,並且作出適當嘅決策[49][50][51]

心靈會做嘅訊息處理過程好多樣化,而以下嘅係認知科學上最多人研究嘅課題[6][19][22]

感知[編輯]

幅圖入面嗰個係後生女人定係阿婆呢?
內文: 感知

一個訊息處理體要解難,就實要由外界嗰度吸收訊息,感知(perception)就係指透過感官獲取外界嘅訊息並且處理呢啲訊息嘅能力-視覺幫手接收外界嘅光,聽覺會接收外界嘅聲,嗅覺能夠幫手辨別周圍環境有乜嘢化學物等等,人類最依賴嘅係視覺同聽覺,但第啲動物會同人類有啲唔同,例如等嘅動物就比人類更加依賴嗅覺[52]

感知可以由刺激本身嘅物理性質主導,但又可以受到個人嘅認知系統本身嘅特質左右:認知科學家會研究由下至上(bottom-up)嘅過程,觀察人類由接收到光同聲等嘅刺激嗰陣,佢哋啲感官內部發生乜嘢事同埋訊息點樣傳上個腦嗰度,另一方面又會研究由上至下(top-down)嘅過程,睇個個體嘅神經系統本身嘅特質會點影響個體嘅感知;後者嘅例子有多種嘅曖昧圖像(ambiguous image),好似係幅附圖噉,幅圖可以睇成一個後生、頭髮黑嘅女人,又可以睇成一個頭髮白嗮嘅阿婆;想像有認知科學家搵班人返嚟做受試者,俾佢哋睇一啲曖昧圖像,要佢哋睇完一幅圖之後即刻答幅圖係乜嘢事物,並且計吓統計分析,睇吓受試者嘅答案會受乜嘢因素影響;實驗顯示,(例如)某啲類型人零舍傾向將附圖睇成後生女,又或者係如果個人睇幅圖打前睇過有老人家喺入面嘅相,會零舍容易將幅圖睇成阿婆-噉即係表示受試者嘅感知並唔係純粹由收到嘅刺激嘅物理性質主宰嘅,展示咗由上至下嘅感知過程[52][53]

喺感知系統為個人提供咗「外界有啲乜嘢喺度」嘅訊息之後,個腦仲會對呢啲訊息做進一步嘅處理。

注意力[編輯]

內文: 注意力

注意力(attention)係一系列嘅認知過程,涉及一隻動物由接收到嘅外界訊息當中篩選一部份出嚟集中處理,並且忽略嗰啲唔係集中處理緊嘅訊息[54][55]:一隻動物(包括人類)嘅腦無時無刻都喺度接收緊極大量嘅訊息,多到冇可能一吓過處理得嗮;好多時,為咗要有效噉解決佢生存所需要解決嘅問題,隻動物要集中處理同佢生存最有啦掕嗰啲訊息,同時又焗住要忽略嗰啲同佢生存冇噉有啦掕嘅訊息。喺對注意力嘅研究上,認知科學家一般都興將注意力想像成一種有限嘅資源,由個腦嘅某啲系統決定要點樣分配落去唔同嘅訊息源嗰度[56],而個腦當中塊額葉同塊頂葉之間嘅網絡(fronto-parietal network;睇埋腦葉)同注意力零舍有關[57][58]

根據廿一世紀初嘅研究,人腦嘅注意力系統大致上可以分做三大子系統,而呢三個系統之間嘅互動就控制住專注持續注意力等嘅注意力相關功能[57]

  1. 負責令個人意識到周圍訊息嘅警覺(alertness)系統;
  2. 負責將注意力資源由一樣嘢移去第樣嘢嗰度嘅導向(orientation)系統;
  3. 負責處理衝突(例如有兩個刺激同時要求注意力)嘅執行控制(executive control)系統。

記憶[編輯]

內文: 記憶

記憶(memory)係指個腦將啲訊息入碼、儲起、同埋喺有需要嗰陣提取(retrieve)出嚟用嘅能力:喺野外,一隻動物需要記住(例如)傾向有嘢食嘅地點、傾向有獵食者出現嘅地點、以及打前見過嘅同類當中「邊啲信得過邊啲出賣過自己」等等嘅訊息-記憶對於動物(包括人類)嘅體驗嚟講至關重要,佢令到一隻動物曉由收到嘅訊息當中揀一啲儲起,並且喺要用嗰陣將呢啲訊息提取返出嚟用[59][60]。喺人類當中,記憶係人際關係語言學習、同埋人格同一性嘅根本[61]

一個人類認知系統當中嘅記憶可以按照「有冇得用口頭報告返出嚟」分做有意識(explicit)同冇意識(implicit)兩大種,又有得按照「會維持幾耐」分做短期記憶(short-term memory;頂櫳維持幾分鐘)同長期記憶(long-term memory;可以維持到成幾廿年)兩大種[47][62]:記憶嘅開端係感官,啲感官嘅神經細胞會以電流同化合物訊號等嘅型式將啲感官收到嘅訊息傳去個腦嗰度,而工作記憶(working memory)跟手會負責暫時儲住個腦用緊嗰啲訊息,呢啲訊息當中有一啲可能會俾個腦儲起做長期記憶,並且對隻動物嘅行為產生更加深遠嘅影響[62];另一方面,工作記憶又會幫手提取一啲由打前儲起咗嘅長期記憶嗰度得到嘅訊息[47]。長期記憶仲有可能會透過一啲冇意識嘅途徑產生[63]

語言[編輯]

一句句子可以分做多個組成部份,例如係呢句英文句子噉:
Colorless green ideas sleep furiously.
「無顏色嘅(形容詞)綠色(形容詞)諗頭(名詞)好嬲噉(副詞)瞓覺(動詞)。」
內文: 語言語言學

感知、注意力、同記憶等嘅訊息處理過程喺好多人類以外嘅動物身上都觀察得到,但語言(language)呢家嘢就係人類獨有嘅認知功能。語言嘅定義大致如下:一隻「語言」係一套用嚟俾個體之間互相傳達訊息嘅符號系統,喺一隻語言裏面,每個符號都具有某啲約定俗成嘅意思,而且多個符號有得按某啲規則(文法)組合埋一齊,並且表達更加複雜嘅意思(當中符號通常係講嘢嘅聲)。英文閩南話、同廣東話等嘅事物都符合呢個定義[64][65]

人類由幾歲大開始經已能夠使用語言,而且喺正常情況下,人類冚唪唥都能夠學識講至少一種語言。語言學(linguistics)呢個領域會研究語言嘅抽象特性同埋點解人類能夠學識使用語言,會問以下呢啲問題:

  • 語言知識有幾多係天生幾多係後生學嘅?
  • 點解大人要學第二語言會難過臊孲仔學自己母語
  • 人類點解曉理解自己之前未見過嘅句子?

... 等等[66]

傳統上,語言學不嬲俾人當做人文學科嘅一部份,同歷史學藝術、以及文學等嘅領域相近,但自從喺廿世紀中開始,愈嚟愈多嘅研究者開始攞科學方法研究人類對語言嘅使用同埋呢啲過程當中所涉及嘅認知功能,而為咗用科學方法研究語言,佢哋要制定一啲方法,將語言嘅相關變數作出精確量化嘅量度,例如係要有一套唔曖昧嘅基準,決定點樣將一句句子入面唔同嘅字分類做各種詞性形容詞名詞、同動詞等),令到對語言嘅研究開始偏近認知科學嘅範疇-形成認知語言學(cognitive linguistics)呢個語言學子領域[65][67]

學習[編輯]

內文: 學習

學習(learning)喺心理學同相關領域上嘅定義係「一個個體按照自己嘅經歷改變自己嘅行為」嘅過程。學習係記憶嘅必然結果,涉及咗個認知系統獲取外界嘅訊息,將呢啲訊息至少局部噉儲喺記憶入面,並且喺將來嘅時間點俾呢啲儲起咗嘅訊息左右自己嘅行為-可以係學全新嘅行為,又可以係改變舊有嘅行為[68][69]。學習唔淨衹係人類識得做,動物以及某啲品種嘅植物[70]、甚至乎係專門嘅機械曉學習[71],能夠學好多唔同嘅行為。動物絕大多數都曉學一啲簡單嘅「避開痛楚」動作,例如係一個人俾個煮食爐辣親一次之後,下次識唔好搵隻手去掂個爐,而智能高嘅動物,包括人類同某啲人工智能,仲有能力學做一啲複雜嘅行為或者理解複雜嘅概念,例如足球芭蕾舞等嘅運動當中都有極之高深嘅技法,而學深奧嘅科學知識要求高度嘅理解能力[72]

「學習」呢個概念展現咗認知科學上嘅先天定後天(nature versus nurture)爭論:一方面,人類有好多行為都係天生嘅,多數嘅人格特徵同智商等嘅個體差異都經已證實咗起碼局部係天生嘅[73];另一方面,人類又好明顯具有學習嘅能力,曉按照自己經歷過嘅嘢改變自己嘅行為[69]。例如係根據研究,五大性格特質(Big Five personality traits)當中嘅外向度(extraversion;定義上外向嘅人鍾意講嘢同交際)就有成 54% 係受遺傳因素影響嘅-簡單啲講,有啲人天生就外向,又有啲人係後天學到噉外向嘅,更多人身處呢兩個極端之間[74];先天定後天嘅爭論喺認知語言學當中詏得特別犀利:有學者主張,遺傳因子當中帶有某啲有關普遍文法(universal grammar)嘅訊息,而呢啲基因會左右個腦嘅發育,令到人類普遍傾向以某啲方式看待世界同埋組句子[75]。到咗廿一世紀,主流科學界都認同行為係同時受到先天同後天因素影響嘅,但仲係會對「呢個行為係先天因素多定後天因素多」有所爭論[73]

意識[編輯]

內文: 意識

喺是但一個時間點,一個人會喺度諗緊一啲嘢,而呢啲嘢係口頭報告得到出嚟嘅,但佢同時又會無意識噉做一啲唔使諗都曉做嘅嘢,例如係行路噉,一個正常嘅大人行起路上嚟唔使特登思考「應該邊隻腳踩出去先」等嘅問題,就能夠自動噉行路;而好多時,人類會突然發覺自己喺冇思考過嘅情況下,就自動做一啲行為-即係話喺個腦處理緊嘅訊息當中,有一啲係有意識(conscious)嘅,有一啲係無意識(unconscious)嘅,前者能夠口頭報告返出嚟,而後者就唔得。喺認知科學當中,意識(consciousness)定義大致上就係指一個知道自己諗緊乜做緊乜嘅狀態[76][77]

認知科學上嘅研究顯示,人類嘅行為會受到無意識嘅訊息處理影響。舉個例子說明,有啲實驗就試過用類似噉嘅做法:研究者要求一班受試者各自噉望實自己前面個熒光幕,再俾個掣佢哋,叫佢哋一見到有個藍色四方形喺個熒光幕閃過,就要有噉快得噉快撳個掣;喺一部份嘅「藍色四方形出現」事件當中,個熒光幕會喺個藍色四方形出現前 0.5 秒嗰一刻有粒極之快消失嘅星星閃過(快到受試者冇能力意識到粒星星嘅存在)-粒星星係一個訊號,會話俾睇到佢嘅人知,藍色四方形將會喺 0.5 秒後出現;實驗顯示,事後問返啲受試者,佢哋冚唪唥都唔知道有星星閃過,但統計分析嘅結果就反映,粒星星能夠令受試者反應變快(有星星出現嘅「藍色四方形出現」事件當中嘅受試者反應時間快啲)-即係話受試者雖然意識唔到粒星星嘅存在,但粒星星依然影響得到佢哋嘅認知過程同行為[78][79]

同人工智能嘅啦掕[編輯]

睇埋:人工智能

人工智能(artificial intelligence,簡稱「AI」)係電腦科學嘅一個子領域,專門研究點樣用各種嘅演算法教一部電腦展示好似人類噉嘅智能:一舊物體如果有能力感知佢四圍嘅環境並且按照所得嘅訊息嚟提升自己達到目的嘅機會率嘅話,噉佢就算係一個智慧型代理(intelligent agent),包括人類在內嘅動物都符合呢個定義,而人工智能領域嘅目標就係研究點樣人工噉整一啲智慧型代理出嚟-自自然然,正如機械工程師喺設計飛機嘅翼嗰陣會參考雀仔嘅翼,研究人工智能嘅科學家就要參考現實世界嘅認知系統,並且嘗試整出模仿呢啲認知系統嘅人工智能[50][80][81]

心靈子系統[編輯]

有認知科學家提出,心靈可以分做多個子系統,每一個子系統都負責某啲認知功能,而且每個都可以用一啲演算法嚟模擬,並且創造出能夠展現認知能力嘅機械-

  • 一個感知系統,由外界吸取訊息,個系統嘅輸入係「外界嘅物理刺激」,輸出係「周圍環境有啲乜嘢物件喺度」等;
  • 一個注意力系統,決定將注意力擺喺邊件物件嗰度,會以其他系統嘅輸出作為自己輸入,輸出係「邊件物件最值得注意」,個輸出會送去感知系統嘅控制器嗰度,話俾個控制器聽應該望邊;
  • 一個記憶系統,將成個系統現時處理緊嘅訊息當中嘅一部份儲起,呢個系統會有某啲條件,要求啲訊息達到呢啲條件先會將舊訊息儲起;
  • 一個知識系統,用記憶當中嘅訊息建立一個描述「呢個世界係點運作」嘅數學模型,等個認知系統可以預測未來;
  • 一個決策系統,會由其他各系統嗰度攞訊息,按照知識系統嘅模型估計自己每個可能行動方案會做成乜嘢結果,計吓邊個結果對自己嚟講最理想,呢個系統會有個輸出去行為產生器(behavior generator)嗰度,個行為產生器會直接駁落肌肉等嘅力學部份嗰度,令個系統可以採取行動

... 等等[50]

簡史[編輯]

杭士基嘅相,2004 年影嘅;佢係認知科學其中一個創始人。
睇埋:心理學史

對認知嘅研究可以話係歷史相當悠久。早喺公元前嘅古希臘時代經已有哲學家喺度思考「心靈係乜」嘅問題,柏拉圖(Plato)同阿里士多德(Aristotle)都有對呢方面嘅問題著過墨,而及後嘅西方哲學思想家都一路有對心靈哲學(philosophy of mind)作出討論,例如 17 世紀法國哲學家笛卡兒(Descartes)就提出心身二元論(mind-body dualism),主張心靈同身體係兩個獨立嘅物體,認為人類嘅心靈具有非物理性嘅特質。呢啲思想最後喺 18 世紀形成早期嘅心理學-用科學方法研究心靈嘅領域[82]

廿世紀早期嘅心理學由行為主義(behaviorism)主導:當時嘅心理學家(尤其係美國嘅心理學家)普遍認為,「思緒」或者「記憶」呢啲嘢唔可以直接量度同觀察,難以作為科研嘅對象,因而輕視對呢啲嘢嘅研究,令到心理學研究完全變成以外顯行為做主導(例:研究「呢個刺激通常會引致邊個邊個行為」等,忽略隻動物心靈內部嘅訊息處理過程)。喺 1959 年,美國猶太裔語言學家杭士基(Noam Chomsky)猛烈噉批評「語言嘅現象能夠齋靠外顯行為理解」嘅諗法,提倡要了解語言呢個現象,就實要考慮個人心靈內部做嘅訊息處理,呢個諗法得到唔少學者支持[83]

事實上,廿世紀嘅 1950 年代係認知革命(The cognitive revolution)進行得如火如荼嘅時期-呢個時期多個研究心靈嘅領域嘅學者,包括心理學家同語言學家等,開始發覺一味淨係研究外顯行為嘅行為主義根本唔掂,解釋唔到好多心靈嘅相關現象[84]。於是開始出現咗一股思潮,提倡要研究心靈內部嘅訊息處理過程,集結咗心理學、神經科學、同人工智能等領域嘅科學家,形成一個新嘅科學領域。喺 1973 年,英格蘭科學家 Christopher Longuet-Higgins 提出咗「cognitive science」呢個詞[85],正式噉確立咗認知科學呢個領域嘅學術地位[82][86]

睇埋[編輯]

參考[編輯]

  • Bara, B. G. (2016). Cognitive science: A developmental approach to the simulation of the mind. Routledge.
  • Bara, B. G. (2010). Cognitive pragmatics: The mental processes of communication. MIT Press.
  • Eysenck, M. W., & Brysbaert, M. (2018). Fundamentals of cognition. Routledge.
  • Harré, R. (2002). Cognitive science: A philosophical introduction. Sage.
  • Kaiser, M. (2007). Brain architecture: a design for natural computation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1861), 3033-3045.
  • Nickerson, R. S., Dumais, S. T., Lewandowsky, S., & Perfect, T. J. (2007). Handbook of applied cognition (pp. 163-194). F. T. Durso (Ed.). New York: Wiley.
  • Ward, J. (2015). The student's guide to cognitive neuroscience. Psychology Press.
  • John Turri (2016). Knowledge and the Norm of Assertion. Open Book Publishers. A free textbook for download.

[編輯]

  1. Adapted from Miller, George A (2003). "The cognitive revolution: a historical perspective". Trends in Cognitive Sciences, 7.
  2. 2.0 2.1 2.2 Thagard, Paul, Cognitive Science, The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. Zalta (ed.).
  3. Stefano Franchi, Francesco Bianchini. "On The Historical Dynamics Of Cognitive Science: A View From The Periphery". The Search for a Theory of Cognition: Early Mechanisms and New Ideas. Rodopi, 2011. p. XIV.
  4. Belkin, N. J. (1990). The cognitive viewpoint in information science. Journal of information science, 16(1), 11-15.
  5. Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional science, 32(1), 1-8.
  6. 6.0 6.1 Varela, F. J., Thompson, E., & Rosch, E. (2017). The embodied mind: Cognitive science and human experience. MIT press.
  7. Tsvetkov, V. Y. (2014). Cognitive information models. Life Science Journal, 11(4), 468-471.
  8. Sara, S. J., & Segal, M. (1991). Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. In Progress in brain research (Vol. 88, pp. 571-585). Elsevier.
  9. Casson, R. W. (1981). Language, culture, and cognition: Anthropological perspectives. New York: Macmillan.
  10. 10.0 10.1 Gurumoorthy, S., Rao, B. N. K., & Gao, X. Z. (2018). Cognitive Science and Artificial Intelligence: Advances and Applications. Springer Singapore.
  11. "Ask the Cognitive Scientist". American Federation of Teachers. "Cognitive science is an interdisciplinary field of researchers from Linguistics, psychology, neuroscience, philosophy, computer science, and anthropology that seek to understand the mind."
  12. Filler A (12 July 2009). "The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI". Nature Precedings.
  13. 13.0 13.1 Friedenberg, J., & Silverman, G. (2011). Cognitive science: An introduction to the study of mind. Sage. Ch. 2.
  14. Block, Ned. (1980a). "Introduction: What Is Functionalism?" in Readings in Philosophy of Psychology. Cambridge, MA: Harvard University Press.
  15. Mental Representation. Stanford Encyclopedia of Philosophy.
  16. 16.0 16.1 Friedenberg, J., & Silverman, G. (2011). Cognitive science: An introduction to the study of mind. Sage. Ch. 1.
  17. Churchland, P. S., & Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Science, 242(4879), 741-745.
  18. Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman.
  19. 19.0 19.1 19.2 Gallistel, C. R., & King, A. P. (2011). Memory and the computational brain: Why cognitive science will transform neuroscience (Vol. 6). John Wiley & Sons.
  20. 20.0 20.1 Gazzaniga, M. S., Ivry, R. B. & Mangun, G. R. (2002). Cognitive Neuroscience: The biology of the mind (2nd ed.). New York: W. W. Norton.
  21. Kaiser, M. (2007). Brain architecture: a design for natural computation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1861), 3033-3045.
  22. 22.0 22.1 Miller, G. A. (2003). "The cognitive revolution: a historical perspective". Trends in Cognitive Sciences. 7: 141–144.
  23. Ferrés, Joan; Masanet, Maria-Jose (2017). "Communication Efficiency in Education: Increasing Emotions and Storytelling". Comunicar (in Spanish). 25 (52): 51–60.
  24. Bless, H., Fiedler, K., & Forgas, J. P. (2006). Mood and the regulation of information processing and behavior. Affect in social thinking and behavior, 6584.
  25. Dodge, K. A., & Crick, N. R. (1990). Social information-processing bases of aggressive behavior in children. Personality and social psychology bulletin, 16(1), 8-22.
  26. Lewandowski, Gary; Strohmetz, David (2009). "Actions can speak as loud as words: Measuring behavior in psychological science". Social and Personality Psychology Compass. 3 (6): 992–1002.
  27. Blass, Thomas (1999). "The Milgram paradigm after 35 years: Some things we now know about obedience to authority". Journal of Applied Social Psychology. 29 (5): 955–978.
  28. Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: Is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)?. Psychologica Belgica, 51(1), 5-13.
  29. Duchowski, A. T. (2007). Eye tracking methodology. Theory and practice, 328(614), 2-3.
  30. Salvucci, D. D., & Goldberg, J. H. (2000, November). Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 symposium on Eye tracking research & applications (pp. 71-78). ACM.
  31. Lu, Z. L., & Dosher, B. (2013). Visual psychophysics: From laboratory to theory. MIT Press.
  32. Stein, B. E., London, N., Wilkinson, L. K., & Price, D. D. (1996). Enhancement of perceived visual intensity by auditory stimuli: a psychophysical analysis. Journal of cognitive neuroscience, 8(6), 497-506.
  33. Sun, R. (ed.), (2008). The Cambridge Handbook of Computational Psychology. New York: Cambridge University Press.
  34. Sun, Ron (ed.), Grounding Social Sciences in Cognitive Sciences. MIT Press, Cambridge, Massachusetts. 2012.
  35. Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence A Modern Approach. Prentice Hall. p. 578.
  36. Bryson, Arthur Earl (1969). Applied Optimal Control: Optimization, Estimation and Control. Blaisdell Publishing Company or Xerox College Publishing. p. 481.
  37. Omidvar, O., & Elliott, D. L. (1997). Neural systems for control. Elsevier.
  38. The Machine Learning Dictionary - activation level.
  39. 39.0 39.1 Learning process of a neural network. Towards Data Science.
  40. The differences between Artificial and Biological Neural Networks. Towards Data Science.
  41. Artur S. d'Avila Garcez, Luis C. Lamb and Dov M. Gabbay. Neural-Symbolic Cognitive Reasoning. Cognitive Technologies. Springer, 2008, ISBN 978-3-540-73245-7, 2008.
  42. Bailey, D.L; D.W. Townsend; P.E. Valk; M.N. Maisey (2005). Positron-Emission Tomography: Basic Sciences. Secaucus, NJ: Springer-Verlag.
  43. Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 1). Sunderland, MA: Sinauer Associates.
  44. Gevins, A. S., Zeitlin, G. M., Doyle, J. C., Yingling, C. D., Schaffer, R. E., Callaway, E., & Yeager, C. L. (1979). Electroencephalogram correlates of higher cortical functions. Science, 203(4381), 665-668.
  45. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of modern Physics, 65(2), 413.
  46. Baddeley, A.D. and Hitch, G.J. (1974) Working memory. In The Psychology of Learning and Motivation (Bower, G.A., ed.), pp. 47–89, Academic Press.
  47. 47.0 47.1 47.2 Baddeley, A.D. (2007). Working memory, thought and action. Oxford: Oxford University Press.
  48. Rudner, Mary; Fransson, Peter; Ingvar, Martin; Nyberg, Lars; Rönnberg, Jerker (2007-01-01). "Neural representation of binding lexical signs and words in the episodic buffer of working memory". Neuropsychologia. 45 (10): 2258–2276.
  49. Povinelli, D. J. (1993). Reconstructing the evolution of mind. American Psychologist, 48(5), 493.
  50. 50.0 50.1 50.2 Albus, J. S. (1999). The engineering of mind. Information Sciences, 117(1-2), 1-18.
  51. Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279-1285.
  52. 52.0 52.1 Mechelli, A., Price, C. J., Friston, K. J., & Ishai, A. (2004). Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cerebral cortex, 14(11), 1256-1265.
  53. Parkkonen, L.; Andersson, J.; Hämäläinen, M.; Hari, R. (2008). "Early visual brain areas reflect the percept of an ambiguous scene". Proceedings of the National Academy of Sciences of the United States of America. 105 (51): 20500–20504.
  54. How Psychologists Define Attention. Verywell Mind.
  55. Chavajay, P; Rogoff, B (1999). "Cultural Variation in Management of Attention by Children and Their Caregivers". Developmental Psychology. 35 (4): 1079–90.
  56. Anderson, John R. (2004). Cognitive Psychology and Its Implications (6th ed.). Worth Publishers. p. 519.
  57. 57.0 57.1 Posner, M. I.; Petersen, S. E. (1990). "The attention system of the human brain". Annual Review of Neuroscience. 13(1): 25–42.
  58. Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems?. Proceedings of the National Academy of Sciences, 95(3), 831-838.
  59. Lauralee Sherwood (1 January 2015). Human Physiology: From Cells to Systems. Cengage Learning. pp. 157–162.
  60. Schwarzel. M.& Mulluer. U., "Dynamic Memory Networks", Cellular and Molecular Life Science, 2006.
  61. Eysenck, M.W. (2012). Fundamentals of cognition. New York: Psychology Press.
  62. 62.0 62.1 Thompson, R. F., & Kim, J. J. (1996). Memory systems in the brain and localization of a memory. Proceedings of the national academy of sciences, 93(24), 13438-13444.
  63. Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 224.
  64. de Saussure, F. (1986). Course in general linguistics (3rd ed.). (R. Harris, Trans.). Chicago: Open Court Publishing Company. (Original work published 1972).
  65. 65.0 65.1 Isac, Daniela; Charles Reiss (2013). I-language: An Introduction to Linguistics as Cognitive Science, 2nd edition. Oxford University Press. p. 5.
  66. Martinet, André (1960). Elements of General Linguistics. Studies in General Linguistics, vol. i. Translated by Elisabeth Palmer Rubbert. London: Faber.
  67. Evans, V., & Green, M. (2018). Cognitive linguistics: An introduction. Routledge.
  68. Richard Gross, Psychology: The Science of Mind and Behaviour. 6E, Hachette UK.
  69. 69.0 69.1 Ormrod, J. E., & Davis, K. M. (2004). Human learning. London: Merrill.
  70. Karban, R. (2015). Plant Learning and Memory. In: Plant Sensing and Communication. Chicago and London: The University of Chicago Press, pp. 31–44.
  71. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR), 34(1), 1-47.
  72. Daniel L. Schacter; Daniel T. Gilbert; Daniel M. Wegner (2011) [2009]. Psychology, 2nd edition. Worth Publishers. p. 264.
  73. 73.0 73.1 Pinker, Steven (September 30, 2002) The Blank Slate: The Modern Denial of Human Nature. Viking; 1st edition.
  74. Bouchard TJ, McGue M (January 2003). "Genetic and environmental influences on human psychological differences". Journal of Neurobiology. 54 (1): 4–45.
  75. Pinker S., Bloom P. (1990). "Natural language and natural selection". Behavioral and Brain Sciences. 13 (4): 707–784.
  76. Cohen A.P., Rapport N. (1995). Questions of Consciousness. London: Routledge.
  77. Arnaud Destrebecqz; Philippe Peigneux (2006). "Methods for studying unconscious learning". In Steven Laureys (ed.). The Boundaries of Consciousness: Neurobiology and Neuropathology. Elsevier. pp. 69–80.
  78. Ansorge, U., Heumann, M., and Scharlau, I. (2002). Influences of visibility, intentions, and probability in a peripheral cuing task. Conscious. Cogn. 11, 528–545.
  79. Scharlau, I., and Ansorge, U. (2003). Direct parameter specification of an attention shift: evidence from perceptual latency priming. Vision Res. 43, 1351–1363.
  80. Definition of AI as the study of intelligent agents:
    • Poole, Mackworth & Goebel 1998, p. 1, which provides the version that is used in this article. Note that they use the term "computational intelligence" as a synonym for artificial intelligence.
    • Russell & Norvig (2003). (who prefer the term "rational agent") and write "The whole-agent view is now widely accepted in the field" (Russell & Norvig 2003, p. 55).
    • Nilsson 1998.
    • Legg & Hutter 2007.
  81. Sun, Ron (ed.) (2008). The Cambridge Handbook of Computational Psychology. Cambridge University Press, New York.
  82. 82.0 82.1 Horst U.K. Gundlach, "Germany", in Baker (ed.), Oxford Handbook of the History of Psychology (2012).
  83. Chomsky, Noam (1959). "Reviews: Verbal behavior by B. F. Skinner". Language. 35 (1): 26–58.
  84. Baars, Bernard J. (1986) The cognitive revolution in psychology. Guilford Press, New York.
  85. Longuet-Higgins, H. C. (1973). "Comments on the Lighthill Report and the Sutherland Reply", in Artificial Intelligence: a paper symposium, Science Research Council, 35-37
  86. Margaret A. Boden. (2008). Mind as machine: A history of cognitive science. Oxford University Press.

[編輯]