生物科技
生物科技係生物學分支,指利用生物(動物、植物或者微生物)生產有用物質或者改良產品嘅科學技術。
生物科技呢個詞語喺1919年第一次畀卡羅利·埃雷基用[1],佢係指用生物嚟幫手,將啲原材料整啲產品出嚟。生物科技嘅核心原則係利用生物系統同埋生物,好似細菌、酵母菌、同埋植物噉,去做啲特定嘅任務或者生產啲有價值嘅物質。
生物科技對社會好多方面都有好大影響,由醫學到農業到環境科學都係。其中一項生物科技嘅關鍵技術係基因工程,呢個技術可以畀科學家改生物嘅基因組成,嚟達到想要嘅結果。呢個可以包括將一種生物嘅基因擺入去另一種生物度,咁樣就會產生新嘅特徵或者改咗本身有嘅特徵。[2]
其他生物科技嘅重要技術包括組織培養,呢個技術可以畀研究人員喺實驗室度種細胞同組織,嚟做研究同埋醫療用途;重有發酵,發酵就係用嚟生產好多唔同嘅產品,好似啤酒、紅酒同埋芝士噉。
生物科技嘅應用好廣泛,已經帶領我哋開發咗好多產品,好似救命藥、生物燃料、基因改造作物同埋創新物料噉。[3] 生物科技都有用嚟應對環境挑戰,好似開發可以生物降解嘅塑膠,同埋用微生物去清理啲受污染嘅地方。
生物科技係一個發展得好快嘅領域,好有潛力去應對依家好緊急嘅全球挑戰,同埋改善世界各地啲人嘅生活質素;不過,就算生物科技有咁多好處,佢都帶嚟咗啲道德同社會挑戰,好似基因改造同埋知識產權嘅問題。咁樣搞到,對於生物科技喺唔同行業同領域嘅使用同埋應用,一直都有好多辯論同監管。[4]
定義
[編輯]生物科技嘅概念包埋好多程序,用基因工程去修改生物,嚟達到人嘅目的,可以追溯到馴養動物、種植植物,同埋透過育種計劃嚟「改良」佢哋,育種計劃會用到人工選擇同雜交 (生物學)。現代用法都包埋基因工程,同埋細胞同組織培養技術。美國化學學會將生物科技定義做唔同行業應用生物、生物系統或者生物過程,嚟了解生命科學,同埋提升物料同生物嘅價值,好似藥品、農作物同牲畜噉。[5] 根據歐洲生物技術聯合會嘅講法,生物科技就係結合自然科學同生物、細胞、佢哋嘅部分,同埋分子類似物,嚟生產產品同埋提供服務。[6] 生物科技係建基喺基礎生物科學(例如分子生物學、生物化學、細胞生物學、胚胎學、遺傳學、微生物學),反過嚟又提供方法嚟支持同進行生物學嘅基礎研究。[未記出處或冇根據]

生物科技係研究同開發,喺實驗室度用生物信息學嚟探索、提取、利用同生產任何生物同埋任何生物質來源嘅嘢,透過生物化學工程,計劃(例如透過生物合成複製)高附加值產品,預測、配製、開發、製造同營銷,目的係為咗可以持續噉營運落去(嚟回本喺研究同開發嘅無底深潭式嘅初始投資)同埋攞到長久嘅專利權(嚟攞到獨家銷售權,喺呢個之前要攞到國家同國際批准,批准係睇動物實驗同人體實驗嘅結果,尤其係生物科技嘅藥劑分支,嚟預防用嗰啲產品嗰陣出現任何冇發現到嘅副作用或者安全問題)。[7][8][9] 利用生物過程、生物或者系統嚟生產預期可以改善人類生活嘅產品,就叫做生物科技。[10]
對比嚟講,生物工程通常畀人諗做一個相關嘅領域,佢更加強調高層次系統方法(唔一定係直接改或者用生物材料)嚟同生物互動同埋利用生物。生物工程係將工程學同自然科學嘅原理應用喺組織、細胞同分子度。可以將生物工程睇成係用做生物研究同埋控制生物嘅知識,嚟達到可以改善植物同動物功能嘅結果。[11] 相關噉,生物醫學工程係一個有重疊嘅領域,佢成日會借用同應用生物科技(跟唔同嘅定義),尤其係喺生物醫學或者化學工程嘅某啲子領域,好似組織工程、生物藥劑工程同基因工程噉。[未記出處或冇根據]
歷史
[編輯]
雖然平時唔係第一個諗到嘅嘢,但係好多人類整出嚟嘅農業形式都好明顯符合「利用生物技術系統嚟整產品」嘅廣義定義。真係,種植植物可以睇做係最早嘅生物科技事業。[未記出處或冇根據]
農業畀人估計自新石器時代革命之後,就變成咗生產食物嘅主要方法。透過早期嘅生物科技,最早嘅農民揀咗同埋種咗最啱種嘅農作物(例如,產量最高嘅嗰啲)嚟生產夠食嘅食物去養活越嚟越多嘅人。因為農作物同農田變得越嚟越大同埋越嚟越難搞,就發現咗有啲特定嘅生物同埋佢哋嘅副產品可以有效噉施肥、恢復氮同控制害蟲。喺農業嘅歷史入面,農民唔覺意噉改咗佢哋種嘅農作物嘅基因,方法係將佢哋帶到新嘅環境,同埋透過育種嚟同其他植物雜交——呢啲都係最早嘅生物科技形式之一。[唔該解釋係乜東東]
呢啲過程都包埋喺早期啤酒嘅發酵度。[12] 呢啲過程喺早期嘅美索不達米亞、埃及、中國同印度開始用,而家都重係用緊差唔多嘅基本生物方法。喺釀造嗰方面,麥芽穀物(入面有酶)將穀物嘅澱粉變成糖,然後加埋特定嘅酵母菌嚟整啤酒。喺呢個過程入面,穀物入面嘅碳水化合物會分解做酒精,好似乙醇噉。後嚟,其他文化整咗乳酸發酵嘅過程出嚟,呢個過程整咗其他可以保存嘅食物,好似豉油噉。發酵喺嗰個時期都有用嚟整發酵麵包。雖然發酵嘅過程直到路易·巴斯德喺1857年嘅研究先至完全畀人搞清楚,但係佢都重係生物科技嘅第一個用途,將一種食物來源變做另一種形式。[未記出處或冇根據]
喺查理斯·達爾文嘅研究同埋佢生嗰陣之前,動物同植物科學家就已經用緊選擇育種。達爾文喺佢嘅研究基礎上,加埋佢對科學改變物種能力嘅科學觀察。呢啲描述貢獻咗達爾文嘅天擇理論。[13]
幾千年以嚟,人類都用選擇育種嚟改善農作物同牲畜嘅生產,用佢哋嚟做食物。喺選擇育種入面,具有理想特徵嘅生物會交配,嚟生啲有相同特徵嘅後代。例如,呢種技術有用喺粟米度,嚟生產最大粒同最甜嘅農作物。[14]
喺二十世紀初期,科學家對微生物學有咗更加多嘅認識,仲研究緊點樣製造特定嘅產品。喺1917年,查姆·魏茨曼第一次喺工業過程入面用純微生物培養物,就係用產酮梭菌生產粟米澱粉,嚟生產丙酮,英國喺第一次世界大戰嗰陣好需要丙酮嚟製造炸藥。[15]
生物科技都帶領我哋開發咗抗生素。喺1928年,亞歷山大·弗萊明發現咗青黴菌。佢嘅研究帶領霍華德·弗洛里、恩斯特·伯里斯·柴恩同諾曼·希特利去提純由青黴菌整出嚟嘅抗生素——整咗我哋依家知嘅盤尼西林出嚟。喺1940年,盤尼西林開始可以用喺醫藥方面,嚟醫人類嘅細菌感染。[14]
現代生物科技嘅領域通常畀人覺得係喺1971年出世嘅,嗰陣保羅·伯格(史丹福大學)喺基因剪接嘅實驗入面開始成功。赫伯特·博耶(加州大學三藩市分校)同史丹利·諾曼·科恩(史丹福大學)喺1972年將遺傳物質轉移到細菌入面,好犀利噉推進咗呢項新技術,噉樣入面嘅物質就會自己繁殖。生物科技產業嘅商業可行性喺1980年6月16號大大擴大,嗰陣美國最高法院喺戴蒙德訴查克拉巴蒂案入面裁定,基因改造嘅微生物可以申請專利。[16] 印度出世嘅阿南達·莫漢·查克拉巴蒂喺通用電氣做嘢,佢改咗一種細菌(假單胞菌屬),呢種細菌識得分解原油,佢諗住用呢種細菌嚟處理漏油事件。(查克拉巴蒂嘅研究唔係基因操作,而係喺假單胞菌屬細菌嘅唔同種之間轉移成個細胞器)。[未記出處或冇根據]
喺1955年到1960年期間,金屬氧化物半導體場效應晶體管喺貝爾實驗室發明出嚟,[17][18][19][20][21][22] 兩年之後,利蘭·C·克拉克同埋查普·里昂喺1962年發明咗第一個生物傳感器。[23][24] 生物場效應晶體管之後開發出嚟,佢哋之後畀人用得好廣泛嚟度物理、化學、生物同環境參數。[25] 第一個生物場效應晶體管係離子敏感場效應晶體管(ISFET),由皮特·貝格費爾德喺1970年發明。[26][27] 佢係一種特別嘅金屬氧化物半導體場效應晶體管,[25]入面嘅金屬柵極畀離子敏感膜、電解質溶液同參考電極取代咗。[28] 離子敏感場效應晶體管用得好廣泛喺生物醫學應用入面,好似DNA雜交嘅檢查、生物標記物由血液嘅檢查、抗體檢查、葡萄糖度量、pH值感應同基因技術噉。[28]
去到1980年代中期,其他生物場效應晶體管都已經開發出嚟,包括氣體傳感器場效應晶體管(GASFET)、壓力傳感器場效應晶體管(PRESSFET)、化學場效應晶體管(ChemFET)、參考離子敏感場效應晶體管(REFET)、酶修飾場效應晶體管(ENFET)同埋免疫修飾場效應晶體管(IMFET)。[25] 去到2000年代初期,生物場效應晶體管,好似DNA場效應晶體管(DNAFET)、基因改造場效應晶體管(GenFET)同埋細胞電位生物場效應晶體管(CPFET)都已經畀人開發出嚟。[28]
影響生物科技行業成功嘅其中一個因素係全球範圍入面好咗嘅知識產權法例——同埋執行——重有對醫療同藥品嘅需求增加咗。[29]
預計生物燃料嘅需求升會係生物科技行業嘅好消息,美國能源部估計乙醇嘅用量可以令美國石油整出嚟嘅燃料消耗量喺2030年之前減少到30%。生物科技行業令美國農業產業可以好快噉增加佢哋嘅粟米同大豆供應——生物燃料嘅主要材料——方法係開發基因改造種子,呢啲種子可以抵抗害蟲同乾旱。透過增加農場生產力,生物科技可以幫手推動生物燃料嘅生產。[30]
例子
[編輯]生物科技喺四個主要工業領域都有應用,包括醫療保健(醫學)、農作物生產同農業、農作物同其他產品嘅非食物(工業)用途(例如可生物降解塑膠、植物油、生物燃料)同埋環境用途。[31]
例如,生物科技嘅其中一個應用係指定噉用微生物嚟製造有機產品(例子包括啤酒同牛奶產品)。另一個例子係採礦業用本身有嘅細菌嚟做生物浸取。[未記出處或冇根據] 生物科技都有用嚟回收、處理垃圾、清理畀工業活動污染咗嘅地方(生物修復),重有用嚟生產生物武器。
已經創造咗一系列延伸出嚟嘅詞語嚟分生物科技嘅幾個分支,例如:
生物信息學(或者「金色生物科技」)係一個跨唔同學科嘅領域,佢用電腦技術嚟搞掂生物問題,令生物數據嘅快速組織同埋分析變成可能。呢個領域都可以叫做「計算生物學」,可以定義做,「將生物學諗做分子方面嘅嘢,然後用信息學技術嚟理解同組織同呢啲分子有關嘅信息,大規模噉做」。[32] 生物信息學喺好多領域都做緊重要嘅嘢,好似功能基因組學、結構基因組學同蛋白質組學噉,而且係生物科技同製藥行業嘅重要組成部分。[33]
藍色生物技術係基於開發海洋資源嚟創造產品同工業應用。[34] 生物科技嘅呢個分支最常用喺煉油同燃燒工業,主要係用光合作用微藻生產生物油。[34][35]
綠色生物技術係應用喺農業過程嘅生物科技。一個例子會係透過微繁殖嚟揀選同馴化植物。另一個例子係設計轉基因植物,嚟喺特定環境之下,喺有化學物質(或者冇化學物質)嘅情況下生長。其中一個希望係綠色生物技術可能會整啲比起傳統工業化農業更加環保嘅解決方案。其中一個例子係基因改造植物,等佢可以表達殺蟲劑,咁就唔使喺出面用殺蟲劑。其中一個例子會係Bt粟米。綠色生物技術產品(好似Bt粟米噉)最後係咪真係環保啲,呢個係一個幾多人討論嘅話題。[34] 佢通常畀人睇成係綠色革命嘅下一個階段,可以睇做係一個平台,透過用一啲可以令植物生產力更高、更加能夠抵抗生物同非生物脅迫嘅技術,嚟搞掂世界飢餓問題,同埋確保用環保肥料同埋用生物農藥,佢主要集中喺農業嘅發展嗰度。[34] 另一方面,綠色生物技術嘅一啲用途關微生物事,用佢哋嚟清潔同減少垃圾。[36][34]
紅色生物技術係喺醫療同藥劑行業度用生物科技,重有健康保護嗰方面。[34] 呢個分支包括疫苗同抗生素嘅生產、再生療法、整人造器官同埋新嘅疾病診斷方法。[34] 重有激素、幹細胞、抗體、siRNA同診斷測試嘅開發。[34]
白色生物技術,又叫做工業生物技術,係應用喺工業過程嘅生物科技。一個例子係設計一種生物嚟生產有用嘅化學物質。另一個例子係用酶嚟做工業催化劑,嚟生產有價值嘅化學物質,或者摧毀有害/污染嘅化學物質。同用嚟生產工業產品嘅傳統方法比較,白色生物技術通常用少啲資源。[37][38]
「黃色生物技術」係指喺食品生產(食品工業)嗰度用生物科技,例如喺整紅酒(釀酒)、芝士(芝士製作),同啤酒(釀造)嗰陣用發酵。[34] 佢都有用嚟指應用喺昆蟲嗰度嘅生物科技。呢個包括用生物科技嘅方法嚟控制有害嘅昆蟲、分析同使用昆蟲嘅活性成分或者基因嚟做研究,或者應用喺農業同醫學,重有其他唔同嘅方法。[39]
灰色生物技術係專門搞環境應用,重點係保持生物多樣性同埋清除污染物。[34]
棕色生物技術係同乾旱土地同沙漠嘅管理有關。其中一個應用係整啲勁啲嘅種子出嚟,呢啲種子可以抵抗乾旱地區嘅極端環境條件,呢個同創新、農業技術嘅創造同資源嘅管理有關。[34]
紫色生物技術係同圍繞生物科技嘅法律、道德同哲學問題有關。[34]
微生物生物技術已經畀人提議用喺太空同微重力生物技術應用嘅快速興起領域(太空生物經濟)。[40]
黑色生物技術係同生物恐怖主義或者生物武器同生物戰有關嘅顏色,佢用微生物同毒素嚟搞到人類、牲畜同農作物病同死。[41][34]
醫學
[編輯]喺醫學方面,現代生物科技喺好多領域都有應用,好似藥劑藥物嘅發現同生產、藥物基因組學同基因測試(或者基因篩查)。喺2021年,全球藥品生物科技公司總公司價值嘅差唔多40%都活躍喺腫瘤學嗰方面,神經病學同罕見病係另外兩個大應用。[42]

藥物基因組學(藥理學同基因組學嘅結合)係一種技術,佢分析基因組成點樣影響一個人對藥物嘅反應。[43] 呢個領域嘅研究人員透過將基因表達或者單核苷酸多態性同藥物嘅功效或者毒性連埋一齊,嚟研究遺傳變異對病人藥物反應嘅影響。[44] 藥物基因組學嘅目的係開發合理嘅方法嚟優化藥物治療,諗埋病人嘅基因型,嚟確保最大嘅功效同埋最少嘅不良反應。[45] 呢啲方法有望帶嚟「個人化醫療」;喺呢個時代入面,藥物同藥物組合會針對每個人唔同嘅基因組成嚟優化。[46][47]

生物科技幫手發現同製造傳統小分子藥劑藥物,重有生物科技嘅產品——生物藥劑學。現代生物科技可以用嚟比較容易同埋平價噉製造依家有嘅藥物。第一批基因工程產品係設計嚟醫人類疾病嘅藥物。舉個例,喺1978年,基因泰克通過將合成人源化胰島素嘅基因同質粒載體結合埋一齊,擺入大腸桿菌入面,嚟開發合成人源化胰島素。胰島素用得好廣泛嚟醫糖尿病,之前係由屠宰場動物(牛或者豬)嘅胰腺度攞出嚟嘅。基因工程細菌能夠以相對低嘅成本生產大量合成人胰島素。[48][49] 生物科技都令到啲新興療法可以出現,好似基因療法噉。生物科技喺基礎科學嘅應用(例如透過人類基因組計劃)都勁多噉改善咗我哋對生物學嘅理解,隨住我哋對正常同疾病生物學嘅科學知識增加,我哋開發新藥嚟醫之前醫唔到嘅疾病嘅能力都增加咗。[49]
基因測試可以畀遺傳診斷遺傳性疾病嘅弱點,仲可以用嚟確定細路嘅親生父母(基因阿媽同阿爸)或者普遍嚟講確定一個人嘅祖先。除咗研究染色體去到單個基因嘅程度之外,廣義上嘅基因測試都包括生物化學測試,嚟睇吓有冇可能存在遺傳疾病,或者同增加患遺傳病風險有關嘅基因突變形式。基因測試可以搵到染色體、基因,或者蛋白質嘅變化。[50] 大部分時間,測試都係用嚟搵同遺傳病有關嘅變化。基因測試嘅結果可以確認或者排除懷疑係遺傳病嘅嘢,或者幫手確定一個人患上或者遺傳遺傳病嘅機會。截至2011年,已經有幾百種基因測試喺度用緊。[51][52] 因為基因測試可能會搞出道德或者心理問題,基因測試通常都會有遺傳諮詢。
農業
[編輯]基因改造作物(「基因改造作物」,或者「生物科技作物」)係用喺農業嘅植物,佢哋嘅DNA已經透過基因工程技術改過。喺大多數情況下,主要目的係引入一種喺呢個物種入面本身唔會有嘅新性狀。生物科技公司可以透過改善城市農業嘅營養同埋可行性,嚟幫手未來嘅糧食安全。再講,知識產權嘅保護鼓勵咗私人公司喺農業生物科技方面嘅投資。[未記出處或冇根據]
喺糧食作物方面嘅例子包括抵抗某啲害蟲、[53] 疾病、[54] 環境壓力情況、[55] 對化學處理嘅抵抗力(例如對除草劑嘅抵抗力[56])、減少變壞、[57] 或者改善農作物嘅營養成分。[58] 喺非糧食作物方面嘅例子包括生產藥劑、[59] 生物燃料、[60] 同埋其他工業上有用嘅嘢、[61] 以及用於生物修復。[62][63]
農民已經用得好普遍基因改造技術。喺1996年到2011年期間,用基因改造作物種嘅地總面積多咗94倍,由17,000至1,600,000平方公里(4,200,000至395,400,000英畝)。[64] 喺2010年,世界耕地嘅10%種咗基因改造作物。[64] 喺2011年,有11種唔同嘅轉基因作物喺395 × 106英畝(160 × 106公頃)嘅地度做商業種植,遍佈29個國家,好似美國、巴西、阿根廷、印度、加拿大、中國、巴拉圭、巴基斯坦、南非、烏拉圭、玻利維亞、澳洲、菲律賓、緬甸、布基納法索、墨西哥同埋西班牙。[64]
基因改造食品係用基因工程方法,將特定嘅變化擺入佢哋嘅DNA度嘅生物生產嘅食物。呢啲技術令到可以引入新嘅農作物性狀,重可以對食物嘅基因結構進行比之前透過選擇育種同誘變育種嗰啲方法畀到嘅更大程度嘅控制。[65] 基因改造食品嘅商業賣嘢喺1994年開始,嗰陣卡爾基因第一次賣佢哋嘅弗萊弗爾·薩弗爾延遲成熟番茄。[66] 到依家食物嘅大多數基因改造主要集中喺農民好想要嘅經濟作物度,好似大豆、粟米、芥花籽油同棉籽油。呢啲作物已經過工程改造,有抵抗病原體同除草劑嘅能力,重有更好嘅營養成分。基因改造牲畜都已經實驗性噉開發出嚟;喺2013年11月,市場上面係冇基因改造牲畜嘅,[67] 但係喺2015年,美國食品藥品監督管理局批准咗第一種基因改造三文魚可以用嚟做商業生產同埋食。[68]
依家有個科學共識[69][70][71][72],就係目前由基因改造作物出嘅食物對人類健康造成嘅風險,唔會高過傳統食物,[73][74][75][76][77]但係每種基因改造食物都需要喺推出之前,根據佢哋嘅情況嚟做測試。[78][79][80] 儘管如此,公眾比科學家更唔會覺得基因改造食物係安全嘅。[81][82][83][84] 基因改造食物嘅法律同監管狀況因國家唔同,有啲國家唔畀或者限制佢哋,而有啲國家就畀佢哋,但係監管嘅程度就好唔同。[85][86][87][88]
如果唔係用得太過份,基因改造作物都畀到好多生態好處。[89] 抗蟲作物已經證明可以減少殺蟲劑嘅用量,所以整體嚟講減少咗殺蟲劑對環境嘅影響。[90] 但係,反對者從幾個方面反對基因改造作物本身,包括環境問題、基因改造作物生產嘅食物安唔安全、係咪需要基因改造作物嚟應對世界嘅食物需求,同埋呢啲生物受到知識產權法例約束而引起嘅經濟問題。
生物科技喺糧食安全方面有好幾個應用。好似黃金米嗰啲農作物基因改造過,有更高嘅營養成分,而且有可能整到保質期更長嘅食品。[91] 雖然疫苗唔係農業生物科技嘅一種形式,但係疫苗可以幫手預防喺動物農業度出現嘅疾病。另外,農業生物科技可以加快育種過程,為咗生快啲嘅結果同埋提供更多嘅食物。[92] 穀物入面嘅轉基因生物強化已經畀人睇做係一種有希望嘅方法,嚟對抗印度同其他國家嘅營養不良問題。[93]
工業
[編輯]工業生物技術(主要喺歐洲叫做白色生物技術)係生物科技喺工業用途嘅應用,包括工業發酵。佢包括用細胞(好似微生物噉),或者細胞嘅組件(好似酶噉),嚟喺化學品、食品同飼料、清潔劑、紙同紙漿、紡織品同生物燃料等等嘅領域生產工業上有用嘅產品。[94] 喺最近呢幾十年,喺整基因改造生物(GMO)方面已經有咗好大嘅進展,呢啲基因改造生物增強咗工業生物技術應用嘅多樣性同埋經濟可行性。透過使用可再生嘅原材料嚟生產各種化學品同燃料,工業生物技術正積極噉向降低溫室氣體排放同埋擺脫以石化產品為主嘅經濟方向發展。[95]
合成生物學畀人睇做係工業生物技術嘅重要基石之一,因為佢對製造業嘅財務同埋可持續貢獻。生物科技同合成生物學一齊喺生產具有自然友好特性嘅高性價比產品方面發揮住重要作用,方法係用生物基生產嚟代替化石基生產。[96] 合成生物學可以用嚟基因改造模式生物,好似大腸桿菌噉,透過基因組編輯工具嚟增強佢哋生產生物基產品嘅能力,好似生物生產藥品同生物燃料噉。[97] 例如,大腸桿菌同釀酒酵母喺一個聯合體入面可以用做工業微生物,透過喺共同培養方法入面用代謝工程,嚟生產化學治療劑紫杉醇嘅前體,嚟利用兩種微生物嘅好處。[98]
合成生物學喺工業生物技術應用嘅另一個例子係透過CRISPR同CRISPRi系統,重新基因改造大腸桿菌嘅代謝途徑,嚟生產一種叫做1,4-丁二醇嘅化學物質,1,4-丁二醇用喺纖維製造嗰度。為咗生產1,4-丁二醇,作者透過CRISPR改咗大腸桿菌嘅代謝調控,嚟誘導gltA基因嘅點突變、敲除 sad 基因,同埋敲入六個基因(cat1、sucD、4hbd、cat2、bld 同 bdh)。而CRISPRi系統就用嚟敲低影響1,4-丁二醇生物合成途徑嘅三個競爭基因(gabD、ybgC 同 tesB)。結果,1,4-丁二醇嘅產量由0.9 g/L明顯增加到1.8 g/L。[99]
環境
[編輯]環境生物技術包括各種學科,呢啲學科喺減少環境垃圾同埋提供環境安全嘅過程方面,做緊重要嘅嘢,好似生物過濾同生物降解噉。[100][101] 生物技術會影響環境,正面同負面都會。瓦萊羅同其他人認為,有益嘅生物科技(例如,生物修復係用嚟清理漏油或者危險化學品洩漏)同埋生物科技公司搞出嚟嘅唔好影響(例如,轉基因生物嘅遺傳物質流去野生品種)之間嘅分別,可以睇做係應用同影響,各自噉。[102] 清理環境廢物係環境生物技術嘅其中一個應用例子;而生物多樣性喪失或者有害微生物走漏就係生物科技對環境影響嘅例子。[未記出處或冇根據]
好多城市都裝咗城市樹,城市樹用生物科技嚟過濾城市大氣入面嘅污染物。[103]
監管
[編輯]基因工程嘅監管關乎政府用咩方法嚟評估同管理同風險有關嘅嘢,呢啲風險同基因工程技術嘅使用,同埋基因改造生物(GMO)嘅開發同釋放有關,包括基因改造作物同基因改造魚。唔同國家之間嘅基因改造生物監管有唔同,其中美國同歐洲之間嘅唔同最明顯。Template:Needs source 特定國家嘅監管會因基因工程產品嘅預期用途而唔同。例如,唔係諗住用嚟做食物嘅農作物通常唔會畀負責食品安全嘅部門審查。[104] 歐盟分開咗喺歐盟入面種植嘅批准,同埋進口同加工嘅批准。雖然得好少基因改造生物已經批准喺歐盟種植,但係有好多基因改造生物已經批准進口同加工。[105] 基因改造生物嘅種植引發咗關於基因改造作物同非基因改造作物共存嘅辯論。根據共存法規,種植基因改造作物嘅誘因都唔同。[106]
歐盟中使用嘅基因改造生物數據庫
[編輯]歐基尼烏斯(歐洲基因改造生物統一數據庫系統倡議)數據庫目的係幫公司、有興趣嘅私人用戶同埋主管部門,搵到關於歐盟中使用嘅基因改造生物嘅存在、檢測同埋識別嘅準確信息。信息係用英文提供。[未記出處或冇根據]
學習
[編輯]
喺1988年,喺美國國會嘅推動之後,國家普通醫學科學研究所(國家衛生研究院)(NIGMS)設立咗生物科技培訓嘅資助方法。全國各地嘅大學競爭呢啲資金嚟建立生物技術培訓計劃(BTP)。每個成功嘅申請通常會攞到五年嘅資助,然後要重新申請過先得。研究生反過嚟又競爭入生物技術培訓計劃;如果畀接受,喺佢哋博士論文工作期間,會畀兩年或者三年嘅津貼、學費同醫療保險支持。有十九間機構提供國家普通醫學科學研究所支持嘅生物技術培訓計劃。[107] 生物科技培訓喺大學本科程度同社區學院都有提供。[未記出處或冇根據]
參考文獻同註釋
[編輯]- ↑ Ereky, Karl. (June 8, 1919). Biotechnologie der Fleisch-, Fett-, und Milcherzeugung im landwirtschaftlichen Grossbetriebe: für naturwissenschaftlich gebildete Landwirte verfasst. P. Parey. 原先內容歸檔喺March 5, 2016. 喺March 16, 2022搵到 –透過Hathi Trust.
- ↑ "Genetic Engineering" (英文). National Human Genome Research Institute, US National Institutes of Health. 2023-12-15. 喺2023-12-18搵到.
- ↑ Gupta, Varsha; Sengupta, Manjistha; Prakash, Jaya; Tripathy, Baishnab Charan (2016-10-23). "An Introduction to Biotechnology". Basic and Applied Aspects of Biotechnology. pp. 1–21. doi:10.1007/978-981-10-0875-7_1. ISBN 978-981-10-0873-3. PMC 7119977.
- ↑ O'Mathúna, Dónal P. (2007-04-01). "Bioethics and biotechnology". Cytotechnology. 53 (1–3): 113–119. doi:10.1007/s10616-007-9053-8. ISSN 0920-9069. PMC 2267612. PMID 19003197.
- ↑ "Biotechnology". portal.acs.org. American Chemical Society. 原著喺November 7, 2012歸檔. 喺2013-03-20搵到.
- ↑ "BIOTECHNOLOGY-PRINCIPLES & PROCESSES" (PDF). 原著 (PDF)喺August 7, 2015歸檔. 喺2014-12-29搵到.
- ↑ What is biotechnology?. Europabio. Retrieved on March 20, 2013.
- ↑ Key Biotechnology Indicators (December 2011) 互聯網檔案館嘅歸檔,歸檔日期November 8, 2012,.. oecd.org
- ↑ "Biotechnology policies" – Organization for Economic Co-operation and Development. 互聯網檔案館嘅歸檔,歸檔日期August 31, 2012,.. Retrieved on March 20, 2013.
- ↑ Goli, Divakar; Bhatia, Saurabh (May 2018). History, scope and development of biotechnology (英文). IOPscience. doi:10.1088/978-0-7503-1299-8ch1. ISBN 978-0-7503-1299-8.
- ↑ What Is Bioengineering? 互聯網檔案館嘅歸檔,歸檔日期January 23, 2013,.. Bionewsonline.com. Retrieved on March 20, 2013.
- ↑ See Arnold JP (2005). Origin and History of Beer and Brewing: From Prehistoric Times to the Beginning of Brewing Science and Technology. Cleveland, Ohio: BeerBooks. p. 34. ISBN 978-0-9662084-1-2. OCLC 71834130..
- ↑ Cole-Turner R (2003). "Biotechnology". Encyclopedia of Science and Religion. 原先內容歸檔喺October 25, 2009. 喺December 7, 2014搵到.
- ↑ 14.0 14.1 Thieman WJ, Palladino MA (2008). Introduction to Biotechnology. Pearson/Benjamin Cummings. ISBN 978-0-321-49145-9.
- ↑ Springham D, Springham G, Moses V, Cape RE (1999). Biotechnology: The Science and the Business. CRC Press. p. 1. ISBN 978-90-5702-407-8.
- ↑ "Diamond v. Chakrabarty, 447 U.S. 303 (1980). No. 79-139 互聯網檔案館嘅歸檔,歸檔日期June 28, 2011,.." United States Supreme Court. June 16, 1980. Retrieved on May 4, 2007.
- ↑ Template:Cite patent
- ↑ Huff, Howard; Riordan, Michael (2007-09-01). "Frosch and Derick: Fifty Years Later (Foreword)". The Electrochemical Society Interface. 16 (3): 29. doi:10.1149/2.F02073IF. ISSN 1064-8208.
- ↑ Frosch, C. J.; Derick, L (1957). "Surface Protection and Selective Masking during Diffusion in Silicon". Journal of the Electrochemical Society (英文). 104 (9): 547. doi:10.1149/1.2428650.
- ↑ KAHNG, D. (1961). "Silicon-Silicon Dioxide Surface Device". Technical Memorandum of Bell Laboratories: 583–596. doi:10.1142/9789814503464_0076. ISBN 978-981-02-0209-5.
- ↑ Lojek, Bo (2007). History of Semiconductor Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. ISBN 978-3-540-34258-8.
- ↑ Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 120. ISBN 9783540342588.
- ↑ Park, Jeho; Nguyen, Hoang Hiep; Woubit, Abdela; Kim, Moonil (2014). "Applications of Field-Effect Transistor (FET)[[:Template:Ndash]]Type Biosensors". Applied Science and Convergence Technology. 23 (2): 61–71. doi:10.5757/ASCT.2014.23.2.61. ISSN 2288-6559. S2CID 55557610.
{{cite journal}}
: URL–wikilink conflict (help) - ↑ Clark, Leland C.; Lyons, Champ (1962). "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery". Annals of the New York Academy of Sciences. 102 (1): 29–45. Bibcode:1962NYASA.102...29C. doi:10.1111/j.1749-6632.1962.tb13623.x. ISSN 1749-6632. PMID 14021529. S2CID 33342483.
- ↑ 25.0 25.1 25.2 Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. 原先內容歸檔 (PDF)喺2022-10-09.
- ↑ Chris Toumazou; Pantelis Georgiou (December 2011). "40 years of ISFET technology:From neuronal sensing to DNA sequencing". Electronics Letters. 喺May 13, 2016搵到.
- ↑ Bergveld, P. (January 1970). "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements". IEEE Transactions on Biomedical Engineering. BME-17 (1): 70–71. doi:10.1109/TBME.1970.4502688. PMID 5441220.
- ↑ 28.0 28.1 28.2 Schöning, Michael J.; Poghossian, Arshak (September 10, 2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 1364-5528. PMID 12375833. 原先內容歸檔 (PDF)喺2022-10-09.
- ↑ VoIP Providers And Corn Farmers Can Expect To Have Bumper Years In 2008 And Beyond, According To The Latest Research Released By Business Information Analysts At IBISWorld. Los Angeles (March 19, 2008)
- ↑ "The Recession List - Top 10 Industries to Fly and Flop in 2008". Bio-Medicine.org. 2008-03-19. 原著喺June 2, 2008歸檔. 喺May 19, 2008搵到.
- ↑ Amarakoon, Icolyn; Hamilton, Cindy; Mitchell, Sylvia; Tennant, Paula; Roye, Marcia (October 20, 2023). "Biotechnology: principles and applications". Pharmacognosy: 627–645. doi:10.1016/b978-0-443-18657-8.00017-7. 喺November 1, 2024搵到.
- ↑ Gerstein, M. "Bioinformatics Introduction 互聯網檔案館嘅歸檔,歸檔日期2007-06-16.." Yale University. Retrieved on May 8, 2007.
- ↑ Siam, R. (2009). Biotechnology Research and Development in Academia: providing the foundation for Egypt's Biotechnology spectrum of colors. Sixteenth Annual American University in Cairo Research Conference, American University in Cairo, Egypt. BMC Proceedings, 31–35.
- ↑ 34.00 34.01 34.02 34.03 34.04 34.05 34.06 34.07 34.08 34.09 34.10 34.11 34.12 Kafarski, P. (2012). Rainbow Code of Biotechnology 互聯網檔案館嘅歸檔,歸檔日期February 14, 2019,.. CHEMIK. Wroclaw University
- ↑ Biotech: true colours. (2009). TCE: The Chemical Engineer, (816), 26–31.
- ↑ Aldridge, S. (2009). The four colours of biotechnology: the biotechnology sector is occasionally described as a rainbow, with each sub sector having its own colour. But what do the different colours of biotechnology have to offer the pharmaceutical industry. Pharmaceutical Technology Europe, (1). 12.
- ↑ Frazzetto G (September 2003). "White biotechnology". EMBO Reports. 4 (9): 835–7. doi:10.1038/sj.embor.embor928. PMC 1326365. PMID 12949582.
- ↑ Frazzetto, G. (2003). White biotechnology 互聯網檔案館嘅歸檔,歸檔日期November 11, 2018,.. March 21, 2017, de EMBOpress Sitio
- ↑ Advances in Biochemical Engineering/Biotechnology 互聯網檔案館嘅歸檔,歸檔日期July 19, 2018,., Volume 135 2013, Yellow Biotechnology I
- ↑ Santomartino R, Averesch NJ, Bhuiyan M, Cockell CS, Colangelo J, Gumulya Y, Lehner B, Lopez-Ayala I, McMahon S, Mohanty A, Santa Maria SR, Urbaniak C, Volger R, Yang J, Zea L (March 2023). "Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms". Nature Communications. 14 (1): 1391. Bibcode:2023NatCo..14.1391S. doi:10.1038/s41467-023-37070-2. PMC 10030976. PMID 36944638.
{{cite journal}}
: Check|pmc=
value (help); Check|pmid=
value (help) - ↑ Edgar, J.D. (2004). The Colours of Biotechnology: Science, Development and Humankind. Electronic Journal of Biotechnology, (3), 01
- ↑ "Top Global Pharmaceutical Company Report" (PDF). The Pharma 1000. November 2021. 原先內容歸檔 (PDF)喺March 15, 2022. 喺29 December 2022搵到.
- ↑ Ermak G. (2013) Modern Science & Future Medicine (second edition)
- ↑ Wang L (2010). "Pharmacogenomics: a systems approach". Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2 (1): 3–22. doi:10.1002/wsbm.42. PMC 3894835. PMID 20836007.
- ↑ Becquemont L (June 2009). "Pharmacogenomics of adverse drug reactions: practical applications and perspectives". Pharmacogenomics. 10 (6): 961–9. doi:10.2217/pgs.09.37. PMID 19530963.
- ↑ "Guidance for Industry Pharmacogenomic Data Submissions" (PDF). U.S. Food and Drug Administration. March 2005. 原先內容歸檔 (PDF)喺2022-10-09. 喺August 27, 2008搵到.
- ↑ Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, Mitropoulos K, Del Zompo M, Patrinos GP (August 2010). "Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice". Pharmacogenomics. 11 (8): 1149–67. doi:10.2217/pgs.10.97. PMID 20712531.
- ↑ Bains W (1987). Genetic Engineering For Almost Everybody: What Does It Do? What Will It Do?. Penguin. p. 99. ISBN 978-0-14-013501-5.
- ↑ 49.0 49.1 U.S. Department of State International Information Programs, "Frequently Asked Questions About Biotechnology", USIS Online; available from USinfo.state.gov 互聯網檔案館嘅歸檔,歸檔日期September 12, 2007,., accessed September 13, 2007. Cf. Feldbaum C (February 2002). "Biotechnology. Some history should be repeated". Science. 295 (5557): 975. doi:10.1126/science.1069614. PMID 11834802. S2CID 32595222.
- ↑ "What is genetic testing? – Genetics Home Reference". Ghr.nlm.nih.gov. May 30, 2011. 原著喺May 29, 2006歸檔. 喺June 7, 2011搵到.
- ↑ "Genetic Testing: MedlinePlus". Nlm.nih.gov. 原先內容歸檔喺June 8, 2011. 喺June 7, 2011搵到.
- ↑ "Definitions of Genetic Testing". Definitions of Genetic Testing (Jorge Sequeiros and Bárbara Guimarães). EuroGentest Network of Excellence Project. September 11, 2008. 原著喺February 4, 2009歸檔. 喺August 10, 2008搵到.
- ↑ Genetically Altered Potato Ok'd For Crops 互聯網檔案館嘅歸檔,歸檔日期July 31, 2022,. Lawrence Journal-World – May 6, 1995
- ↑ National Academy of Sciences (2001). Transgenic Plants and World Agriculture. Washington: National Academy Press.
- ↑ Paarlburg R (January 2011). "Drought Tolerant GMO Maize in Africa, Anticipating Regulatory Hurdles" (PDF). International Life Sciences Institute. 原著 (PDF)喺December 22, 2014歸檔. 喺April 25, 2011搵到.
- ↑ Carpenter J. & Gianessi L. (1999). Herbicide tolerant soybeans: Why growers are adopting Roundup Ready varieties 互聯網檔案館嘅歸檔,歸檔日期November 19, 2012,.. AgBioForum, 2(2), 65–72.
- ↑ Haroldsen VM, Paulino G, Chi-ham C, Bennett AB (2012). "Research and adoption of biotechnology strategies could improve California fruit and nut crops". California Agriculture. 66 (2): 62–69. doi:10.3733/ca.v066n02p62. 原著喺2023年6月6號歸檔. 喺2025年3月17號搵到.
- ↑ About Golden Rice 互聯網檔案館嘅歸檔,歸檔日期November 2, 2012,.. Irri.org. Retrieved on March 20, 2013.
- ↑ Gali Weinreb and Koby Yeshayahou for Globes May 2, 2012. FDA approves Protalix Gaucher treatment 互聯網檔案館嘅歸檔,歸檔日期May 29, 2013,.
- ↑ Carrington, Damien (January 19, 2012) GM microbe breakthrough paves way for large-scale seaweed farming for biofuels 互聯網檔案館嘅歸檔,歸檔日期May 11, 2017,. The Guardian. Retrieved March 12, 2012
- ↑ van Beilen JB, Poirier Y (May 2008). "Production of renewable polymers from crop plants". The Plant Journal. 54 (4): 684–701. doi:10.1111/j.1365-313X.2008.03431.x. PMID 18476872. S2CID 25954199.
- ↑ Strange, Amy (September 20, 2011) Scientists engineer plants to eat toxic pollution 互聯網檔案館嘅歸檔,歸檔日期September 13, 2011,. The Irish Times. Retrieved September 20, 2011
- ↑ Diaz E, 編 (2008). Microbial Biodegradation: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-17-2.
- ↑ 64.0 64.1 64.2 James C (2011). "ISAAA Brief 43, Global Status of Commercialized Biotech/GM Crops: 2011". ISAAA Briefs. Ithaca, New York: International Service for the Acquisition of Agri-biotech Applications (ISAAA). 原先內容歸檔喺February 10, 2012. 喺June 2, 2012搵到.
- ↑ GM Science Review First Report 互聯網檔案館嘅歸檔,歸檔日期October 16, 2013,., Prepared by the UK GM Science Review panel (July 2003). Chairman Professor Sir David King, Chief Scientific Advisor to the UK Government, P 9
- ↑ James C (1996). "Global Review of the Field Testing and Commercialization of Transgenic Plants: 1986 to 1995" (PDF). The International Service for the Acquisition of Agri-biotech Applications. 原先內容歸檔 (PDF)喺2022-10-09. 喺July 17, 2010搵到.
- ↑ "Consumer Q&A". Fda.gov. March 6, 2009. 原先內容歸檔喺January 10, 2013. 喺December 29, 2012搵到.
- ↑ "AquAdvantage Salmon". FDA. 原先內容歸檔喺December 31, 2012. 喺July 20, 2018搵到.
- ↑ Nicolia, Alessandro; Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology. 34 (1): 77–88. doi:10.3109/07388551.2013.823595. PMID 24041244. S2CID 9836802. 原先內容歸檔 (PDF)喺2022-10-09.
We have reviewed the scientific literature on GE crop safety for the last 10 years that catches the scientific consensus matured since GE plants became widely cultivated worldwide, and we can conclude that the scientific research conducted so far has not detected any significant hazard directly connected with the use of GM crops.
The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns. - ↑ "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. 原先內容歸檔喺January 9, 2019. 喺August 30, 2019搵到.
Currently available transgenic crops and foods derived from them have been judged safe to eat and the methods used to test their safety have been deemed appropriate. These conclusions represent the consensus of the scientific evidence surveyed by the ICSU (2003) and they are consistent with the views of the World Health Organization (WHO, 2002). These foods have been assessed for increased risks to human health by several national regulatory authorities (inter alia, Argentina, Brazil, Canada, China, the United Kingdom and the United States) using their national food safety procedures (ICSU). To date no verifiable untoward toxic or nutritionally deleterious effects resulting from the consumption of foods derived from genetically modified crops have been discovered anywhere in the world (GM Science Review Panel). Many millions of people have consumed foods derived from GM plants – mainly maize, soybean and oilseed rape – without any observed adverse effects (ICSU).
- ↑ Ronald, Pamela (May 1, 2011). "Plant Genetics, Sustainable Agriculture and Global Food Security". Genetics. 188 (1): 11–20. doi:10.1534/genetics.111.128553. PMC 3120150. PMID 21546547.
There is broad scientific consensus that genetically engineered crops currently on the market are safe to eat. After 14 years of cultivation and a cumulative total of 2 billion acres planted, no adverse health or environmental effects have resulted from commercialization of genetically engineered crops (Board on Agriculture and Natural Resources, Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, National Research Council and Division on Earth and Life Studies 2002). Both the U.S. National Research Council and the Joint Research Centre (the European Union's scientific and technical research laboratory and an integral part of the European Commission) have concluded that there is a comprehensive body of knowledge that adequately addresses the food safety issue of genetically engineered crops (Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health and National Research Council 2004; European Commission Joint Research Centre 2008). These and other recent reports conclude that the processes of genetic engineering and conventional breeding are no different in terms of unintended consequences to human health and the environment (European Commission Directorate-General for Research and Innovation 2010).
- ↑
But see also:
Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37 (4): 734–742. Bibcode:2011EnInt..37..734D. doi:10.1016/j.envint.2011.01.003. PMID 21296423. 原先內容歸檔 (PDF)喺2022-10-09.
In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.
Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment". Science, Technology, & Human Values. 40 (6): 883–914. doi:10.1177/0162243915598381. S2CID 40855100.
I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.
And contrast:
Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. 37 (2): 213–217. doi:10.3109/07388551.2015.1130684. ISSN 0738-8551. PMID 26767435. S2CID 11786594.
Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.
The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.and
Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96 (4): 1851–1855. Bibcode:2016JSFA...96.1851Y. doi:10.1002/jsfa.7523. PMID 26536836.It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011). Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.
Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome. - ↑ "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. October 20, 2012. 原先內容歸檔 (PDF)喺2022-10-09. 喺August 30, 2019搵到.
The EU, for example, has invested more than €300 million in research on the biosafety of GMOs. Its recent report states: "The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se more risky than e.g. conventional plant breeding technologies." The World Health Organization, the American Medical Association, the U.S. National Academy of Sciences, the British Royal Society, and every other respected organization that has examined the evidence has come to the same conclusion: consuming foods containing ingredients derived from GM crops is no riskier than consuming the same foods containing ingredients from crop plants modified by conventional plant improvement techniques.
Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"" (PDF). American Association for the Advancement of Science. 原先內容歸檔 (PDF)喺2022-10-09. 喺August 30, 2019搵到. - ↑ European Commission. Directorate-General for Research (2010). A decade of EU-funded GMO research (2001–2010) (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union. doi:10.2777/97784. ISBN 978-92-79-16344-9. 原先內容歸檔 (PDF)喺2022-10-09. 喺August 30, 2019搵到.
- ↑ "AMA Report on Genetically Modified Crops and Foods". American Medical Association. January 2001. 原先內容歸檔喺April 2, 2016. 喺August 30, 2019搵到 –透過International Service for the Acquisition of Agri-biotech Applications."Report 2 of the Council on Science and Public Health (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. 原著 (PDF)喺September 7, 2012歸檔. 喺August 30, 2019搵到.
- ↑ "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 30, 2015. 原先內容歸檔喺December 30, 2019. 喺August 30, 2019搵到.
Several scientific organizations in the US have issued studies or statements regarding the safety of GMOs indicating that there is no evidence that GMOs present unique safety risks compared to conventionally bred products. These include the National Research Council, the American Association for the Advancement of Science, and the American Medical Association. Groups in the US opposed to GMOs include some environmental organizations, organic farming organizations, and consumer organizations. A substantial number of legal academics have criticized the US's approach to regulating GMOs.
- ↑ National Academies Of Sciences, Engineering; Division on Earth Life Studies; Board on Agriculture Natural Resources; Committee on Genetically Engineered Crops: Past Experience Future Prospects (2016). Genetically Engineered Crops: Experiences and Prospects. The National Academies of Sciences, Engineering, and Medicine (US). p. 149. doi:10.17226/23395. ISBN 978-0-309-43738-7. PMID 28230933. 原先內容歸檔喺November 16, 2021. 喺August 30, 2019搵到.
Overall finding on purported adverse effects on human health of foods derived from GE crops: On the basis of detailed examination of comparisons of currently commercialized GE with non-GE foods in compositional analysis, acute and chronic animal toxicity tests, long-term data on health of livestock fed GE foods, and human epidemiological data, the committee found no differences that implicate a higher risk to human health from GE foods than from their non-GE counterparts.
- ↑ "Frequently asked questions on genetically modified foods". World Health Organization. 原先內容歸檔喺November 4, 2020. 喺August 30, 2019搵到.
Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.
GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods. - ↑ Haslberger, Alexander G. (2003). "Codex guidelines for GM foods include the analysis of unintended effects". Nature Biotechnology. 21 (7): 739–741. doi:10.1038/nbt0703-739. PMID 12833088. S2CID 2533628.
These principles dictate a case-by-case premarket assessment that includes an evaluation of both direct and unintended effects.
- ↑ Some medical organizations, including the British Medical Association, advocate further caution based upon the precautionary principle:
"Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. 原先內容歸檔 (PDF)喺2022-10-09. 喺August 30, 2019搵到.In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.
When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.
Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.
The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit. - ↑ Funk, Cary; Rainie, Lee (January 29, 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. 原先內容歸檔喺January 9, 2019. 喺August 30, 2019搵到.
The largest differences between the public and the AAAS scientists are found in beliefs about the safety of eating genetically modified (GM) foods. Nearly nine-in-ten (88%) scientists say it is generally safe to eat GM foods compared with 37% of the general public, a difference of 51 percentage points.
- ↑ Marris, Claire (2001). "Public views on GMOs: deconstructing the myths". EMBO Reports. 2 (7): 545–548. doi:10.1093/embo-reports/kve142. PMC 1083956. PMID 11463731.
- ↑ Final Report of the PABE research project (December 2001). "Public Perceptions of Agricultural Biotechnologies in Europe". Commission of European Communities. 原著喺2017-05-25歸檔. 喺August 30, 2019搵到.
- ↑ Scott, Sydney E.; Inbar, Yoel; Rozin, Paul (2016). "Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States" (PDF). Perspectives on Psychological Science. 11 (3): 315–324. doi:10.1177/1745691615621275. PMID 27217243. S2CID 261060. 原先內容歸檔 (PDF)喺2022-10-09.
- ↑ "Restrictions on Genetically Modified Organisms". Library of Congress. June 9, 2015. 原先內容歸檔喺April 3, 2019. 喺August 30, 2019搵到.
- ↑ Bashshur, Ramona (February 2013). "FDA and Regulation of GMOs". American Bar Association. 原著喺June 21, 2018歸檔. 喺August 30, 2019搵到.
- ↑ Sifferlin, Alexandra (October 3, 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time. 喺August 30, 2019搵到.
- ↑ Lynch, Diahanna; Vogel, David (April 5, 2001). "The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Council on Foreign Relations. 原著喺September 29, 2016歸檔. 喺August 30, 2019搵到.
- ↑ Pollack A (April 13, 2010). "Study Says Overuse Threatens Gains From Modified Crops". The New York Times. 原先內容歸檔喺November 21, 2017. 喺February 24, 2017搵到.
- ↑ Brookes, Graham; Barfoot, Peter (2017-05-08). "Farm income and production impacts of using GM crop technology 1996–2015". GM Crops & Food. 8 (3): 156–193. doi:10.1080/21645698.2017.1317919. ISSN 2164-5698. PMC 5617554. PMID 28481684.
- ↑ Tyczewska, Agata; Twardowski, Tomasz; Woźniak-Gientka, Ewa (January 2023). "Agricultural biotechnology for sustainable food security". Trends in Biotechnology. 41 (3): 331–341. doi:10.1016/j.tibtech.2022.12.013. ISSN 0167-7799. PMC 9881846. PMID 36710131. S2CID 256304868.
{{cite journal}}
: Check|pmc=
value (help); Check|pmid=
value (help); Check|s2cid=
value (help) - ↑ Sairam, R. V.; Prakash, C. S. (July 2005). "OBPC Symposium: maize 2004 & beyond—Can agricultural biotechnology contribute to global food security?". In Vitro Cellular & Developmental Biology - Plant. 41 (4): 424–430. doi:10.1079/ivp2005663. ISSN 1054-5476. S2CID 25855065.
- ↑ Kumar, Pankaj; Kumar, Arun; Dhiman, Karuna; Srivastava, Dinesh Kumar (2021), "Recent Progress in Cereals Biofortification to Alleviate Malnutrition in India: An Overview", Agricultural Biotechnology: Latest Research and Trends, Singapore: Springer Nature Singapore, pp. 253–280, doi:10.1007/978-981-16-2339-4_11, ISBN 978-981-16-2338-7, S2CID 245834290
- ↑ Industrial Biotechnology and Biomass Utilisation 互聯網檔案館嘅歸檔,歸檔日期April 5, 2013,.
- ↑ "Industrial biotechnology, A powerful, innovative technology to mitigate climate change". 歸檔時間January 2, 2014. 喺January 1, 2014搵到.
{{cite web}}
: CS1 maint: unfit URL (link) - ↑ Clarke, Lionel; Kitney, Richard (2020-02-28). "Developing synthetic biology for industrial biotechnology applications". Biochemical Society Transactions. 48 (1): 113–122. doi:10.1042/BST20190349. ISSN 0300-5127. PMC 7054743. PMID 32077472.
- ↑ McCarty, Nicholas S.; Ledesma-Amaro, Rodrigo (February 2019). "Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology". Trends in Biotechnology. 37 (2): 181–197. doi:10.1016/j.tibtech.2018.11.002. ISSN 0167-7799. PMC 6340809. PMID 30497870.
- ↑ Zhou, Kang; Qiao, Kangjian; Edgar, Steven; Stephanopoulos, Gregory (April 2015). "Distributing a metabolic pathway among a microbial consortium enhances production of natural products". Nature Biotechnology. 33 (4): 377–383. doi:10.1038/nbt.3095. ISSN 1087-0156. PMC 4867547. PMID 25558867.
- ↑ Wu, Meng-Ying; Sung, Li-Yu; Li, Hung; Huang, Chun-Hung; Hu, Yu-Chen (2017-12-15). "Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis". ACS Synthetic Biology. 6 (12): 2350–2361. doi:10.1021/acssynbio.7b00251. ISSN 2161-5063. PMID 28854333.
- ↑ Pakshirajan, Kannan; Rene, Eldon R.; Ramesh, Aiyagari (2014). "Biotechnology in environmental monitoring and pollution abatement". BioMed Research International. 2014: 235472. doi:10.1155/2014/235472. ISSN 2314-6141. PMC 4017724. PMID 24864232.
- ↑ Danso, Dominik; Chow, Jennifer; Streit, Wolfgang R. (2019-10-01). "Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation". Applied and Environmental Microbiology. 85 (19). Bibcode:2019ApEnM..85E1095D. doi:10.1128/AEM.01095-19. ISSN 1098-5336. PMC 6752018. PMID 31324632.
- ↑ Daniel A. Vallero, Environmental Biotechnology: A Biosystems Approach, Academic Press, Amsterdam, NV; ISBN 978-0-12-375089-1; 2010.
- ↑ "Debate on robot trees looks to clear the air: What are other countries doing?". The Echo (英文). 2023-11-09. 喺2024-01-17搵到.
- ↑ "The History and Future of GM Potatoes". Potato Pro. March 10, 2010. 原著喺October 12, 2013歸檔. 喺January 1, 2014搵到.
- ↑ Wesseler J, Kalaitzandonakes N (2011). "Present and Future EU GMO policy". 出自 Oskam A, Meesters G, Silvis H (編). EU Policy for Agriculture, Food and Rural Areas (第2版). Wageningen: Wageningen Academic Publishers. pp. 23–332.
- ↑ Beckmann VC, Soregaroli J, Wesseler J (2011). "Coexistence of genetically modified (GM) and non-modified (non GM) crops: Are the two main property rights regimes equivalent with respect to the coexistence value?". 出自 Carter C, Moschini G, Sheldon I (編). Genetically modified food and global welfare. Frontiers of Economics and Globalization Series.第10卷. Bingley, UK: Emerald Group Publishing. pp. 201–224.
- ↑ "Biotechnology Predoctoral Training Program". National Institute of General Medical Sciences. December 18, 2013. 原著喺October 28, 2014歸檔. 喺October 28, 2014搵到.
外部連結
[編輯]Template:Wikiversity department
![]() |