E (數學常數)

出自維基百科,自由嘅百科全書
跳去: 定向搵嘢
數學
基本

自然數
整數
二進分數
有限小數
循環小數
有理數
高斯整數
代數數
實數
複數

負數
分數
單位分數
無限小數
規矩數
無理數
超越數
二次無理數
虛數
艾森斯坦整數

延伸

雙複數
四元數
共四元數
八元數
超數
上超實數
超現實數

超複數
十六元數
複四元數
Tessarine
大實數
超實數

其他

對偶數
雙曲複數
序數
質數
同餘
可計算數
艾禮富數

公稱值
超限數
基數
P進數
規矩數
整數序列
數學常數

圓周率 π = 3.141592653…<NoInclude>

Documentation[開版]

自然對數嘅底 e = 2.718281828…<NoInclude>

Documentation[開版]

虛數單位 i = <NoInclude>

Documentation[開版]

無窮大量 <NoInclude>

Documentation[開版]

e<NoInclude>

Documentation[開版]

自然對數函數嘅底數。有時叫佢做歐拉數Euler's number),個名來自瑞士數學家歐拉;佢嘅數值大約係(小數點後20位):

e = 2.71828182845904523536……<NoInclude>
Documentation[開版]

就好似[[圓周率|圓周率 π <NoInclude>

Documentation[開版]

]]同[[虛數單位|虛數單位i<NoInclude>

Documentation[開版]

]],e<NoInclude>

Documentation[開版]

 係數學入面最重要嘅常數之一。

定義[編輯]

e嘅定義係,入面嘅n趨於無限。

又或者用極限值去定義 e :

用處[編輯]

好多增長或衰減過程都會用到e<NoInclude>

Documentation[開版]

 ,就好似計利息咁。