e (數學常數)

出自維基百科,自由嘅百科全書
跳去: 定向搵嘢
數學
基本

自然數
整數
二進分數
有限小數
循環小數
有理數
高斯整數
代數數
實數
複數

負數
分數
單位分數
無限小數
規矩數
無理數
超越數
二次無理數
虛數
艾森斯坦整數

延伸

雙複數
四元數
共四元數
八元數
超數
上超實數
超現實數

超複數
十六元數
複四元數
Tessarine
大實數
超實數

其他

對偶數
雙曲複數
序數
質數
同餘
可計算數
艾禮富數

公稱值
超限數
基數
P進數
規矩數
整數序列
數學常數

圓周率 π = 3.141592653…<NoInclude>

[]

自然對數嘅底 e = 2.718281828…<NoInclude>

[]

虛數單位 i = <NoInclude>

[]

無窮大量 <NoInclude>

[]

自然指數同埋自然對數函數嘅底數。有時又叫做自然底數歐拉數Euler's number),個名來自瑞士數學家歐拉;佢嘅數值大約係(小數點後20位):

圓周率 同埋虛數單位 一樣, 係數學入面最重要嘅常數之一。

定義[編輯]

可以用微分嚟定義。如果試吓對隨便一個指數函數 求導,根據基本原理:

會發現佢嘅微分等於佢自己乘一個數,所以為咗方便,將後面嗰個數 定義做 ,呢個時候嗰個特定嘅 就係最自然嘅底數,即數學常數 。 亦即係 ,轉換一吓

得到

即係話 嘅定義係,入面嘅 趨於無限大

如果用二項式定理展開佢,會變成:

所以 亦可定義做 ,當中嘅階乘嘅意思。

當定義咗 之後,可以定義埋自然對數 。 所以(對數律)。 然後 嘅微分就可以用連鎖律計:

另一方面,睇返一開始用基本原理得到 嘅微分係 ,而家知道 。 再調位:

因為 同埋上面對 嘅定義,所以:

用二項定理展開,過程同上面差唔多,會得到

所以自然指數 可定義做

用處[編輯]

好多增長或衰減過程都會用到 ,就好似計利息咁。

睇埋[編輯]